Neural Computing and Applications

, Volume 25, Issue 1, pp 123–134 | Cite as

Combining visual customer segmentation and response modeling

  • Zhiyuan Yao
  • Peter Sarlin
  • Tomas Eklund
  • Barbro Back
Original Article


Customer relationship management is a central part of Business Intelligence, and sales campaigns are often used for improving customer relationships. This paper uses advanced analytics to explore customer behavior during sales campaigns. We provide a visual, data-driven and efficient framework for customer-segmentation and campaign-response modeling. First, the customers are grouped by purchasing behavior characteristics using a self-organizing map. To this behavioral segmentation model, we link segment-migration patterns using feature plane representations. This enables visual monitoring of the customer base and tracking customer behavior before and during sales campaigns. In addition to the general segment-migration patterns, this method provides the capability to drill down into each segment to visually explore the dynamics. The framework is applied to a department store chain with more than 1 million customers.


Business Intelligence Customer relationship management (CRM) Visual analytics Customer segmentation Campaign-response modeling 



The financial support of the Academy of Finland (Grant Nos. 127656 and 127592) and the Foundation of Economic Education is gratefully acknowledged.


  1. 1.
    Shah D, Rust RT, Parasuraman A, Staelin R, Day GS (2006) The path to customer centricity. J Serv Res 9(2):113–124CrossRefGoogle Scholar
  2. 2.
    Berry LL (2002) Relationship marketing of services perspectives from 1983 and 2000. J Relatsh Mark 1(1):59–77Google Scholar
  3. 3.
    Day GS (1997) Aligning the organization to the market. In: Lehmann DR, Jocz KE (eds) Reflections on the futures of marketing. MA: Marketing Science Institute, Cambridge, pp 67–93Google Scholar
  4. 4.
    Jayachandran S, Sharma S, Kaufman P, Raman P (2005) The role of relational information processes and technology use in customer relationship management. J Mark 69(4):177–192CrossRefGoogle Scholar
  5. 5.
    Kumar V, Venkatesan R, Reinartz W (2008) Performance implications of adopting a customer-focused sales campaign. J Mark 72(5):50–68CrossRefGoogle Scholar
  6. 6.
    Rygielski C, Wang JC, Yen DC (2002) Data mining techniques for customer relationship management. Technol Soc 24(4):483–502CrossRefGoogle Scholar
  7. 7.
    Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58CrossRefGoogle Scholar
  8. 8.
    Hwang H, Jung T, Suh E (2004) An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Syst Appl 26(2):181–188CrossRefGoogle Scholar
  9. 9.
    Holmbom AH, Eklund T, Back B (2011) Customer portfolio analysis using the SOM. Int J Bus Inf Syst 8(4):396–412Google Scholar
  10. 10.
    Mo J, Kiang MY, Zou P, Li Y (2010) A two-stage clustering approach for multi-region segmentation. Expert Syst Appl 37(10):7120–7131CrossRefGoogle Scholar
  11. 11.
    Yao Z, Holmbom A, Eklund T, Back B (2010) Combining unsupervised and supervised data mining techniques for conducting customer portfolio analysis. In: Proceedings of the 10th industrial conference on data mining, Springer, Germany, BerlinGoogle Scholar
  12. 12.
    Dennis C, Marsland D, Cockett T (2001) Data mining for shopping centres—customer knowledge-management framework. J Knowl Manag 5(4):368–374CrossRefGoogle Scholar
  13. 13.
    Hosseini SMS, Maleki A, Gholamian MR (2010) Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Syst Appl 37(7):5259–5264CrossRefGoogle Scholar
  14. 14.
    Kuo R, Ho L, Hu C (2002) Integration of self-organizing feature map and K-means algorithm for market segmentation. Comput Oper Res 29(11):1475–1493CrossRefzbMATHGoogle Scholar
  15. 15.
    McCarty JA, Hastak M (2007) Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression. J Bus Res 60(6):656–662CrossRefGoogle Scholar
  16. 16.
    Grieser L, Wilde KD (2010) Adaptive right-time technologies in customer relationship management. Bus Inf Syst Eng 2(1):41–44CrossRefGoogle Scholar
  17. 17.
    Ganti V, Gehrke J, Ramakrishnan R (1999) A framework for measuring changes in data characteristics. In: Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, ACM, Philadelphia, United StatesGoogle Scholar
  18. 18.
    Chakrabarti S, Sarawagi S, Dom B (1998) Mining surprising patterns using temporal description length. In: Proceeding of the 24th international conference on very large data bases (VLDB ‘98), Morgan Kaufmann Publishers Inc., San Francisco, USAGoogle Scholar
  19. 19.
    Yairi T, Kato Y, Hori K (2001) Fault detection by mining association rules from house-keeping data. In: Proceeding of the international symposium on artificial intelligence, robotics and automation in space, Montreal, CanadaGoogle Scholar
  20. 20.
    Keogh E, Lonardi S, Chiu BY (2002) Finding surprising patterns in a time series database in linear time and space. In: Proceeding of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Edmonton, CanadaGoogle Scholar
  21. 21.
    Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874CrossRefzbMATHGoogle Scholar
  22. 22.
    D’Urso P, De Giovanni L (2008) Temporal self-organizing maps for telecommunications market segmentation. Neurocomputing 71(13):2880–2892CrossRefGoogle Scholar
  23. 23.
    Denny, Squire DM (2005) Visualization of cluster changes by comparing self-organizing maps. In: Proceedings of the 9th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Springer, Hanoi, VietnamGoogle Scholar
  24. 24.
    Denny, Williams GJ, Christen P (2008) ReDSOM: relative density visualization of temporal changes in cluster structures using self-organizing maps. In: Proceedings of the eighth IEEE international conference on data mining (ICDM), IEEE, Pisa, ItalyGoogle Scholar
  25. 25.
    Denny, Williams GJ, Christen P (2010) Visualizing temporal cluster changes using relative density self-organizing maps. Knowl Inf Syst 25(2):281–302CrossRefGoogle Scholar
  26. 26.
    Yao Z, Sarlin P, Eklund T, Back B (2012) Temporal customer segmentation using the self-organizing time map. In: Proceeding of the 16th international conference on information visualisation (IV), IEEE, Montpellier, FranceGoogle Scholar
  27. 27.
    Sarlin P (2013) Self-organizing time map: an abstraction of temporal multivariate patterns. Neurocomputing 99(1):496–508CrossRefGoogle Scholar
  28. 28.
    Lingras P, Hogo M, Snorek M, West C (2005) Temporal analysis of clusters of supermarket customers: conventional versus interval set approach. Inf Sci 172(1–2):215–240CrossRefGoogle Scholar
  29. 29.
    Ha SH, Bae SM, Park SC (2002) Customer’s time-variant purchase behavior and corresponding marketing strategies: an online retailer’s case. Comput Ind Eng 43(4):801–820CrossRefGoogle Scholar
  30. 30.
    Denny, Christen P, Williams GJ (2012) Analysis of cluster migrations using self-organizing maps. In: Cao L, Huang J, Bailey J, Koh Y, Luo J (eds) New frontiers in applied data mining, vol 7104. Springer, Berlin, pp 171–182CrossRefGoogle Scholar
  31. 31.
    Basu AK, Basu A, Batra R (1995) Modeling the response pattern to direct marketing campaigns. J Mark Res 32(2):204–212CrossRefGoogle Scholar
  32. 32.
    Piatetsky-Shapiro G, Masand B (1999) Estimating campaign benefits and modeling lift. In: Proceeding of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, San Diego, United StatesGoogle Scholar
  33. 33.
    Lessmann S, Voß S (2010) Customer-centric decision support. Bus Inf Syst Eng 2(2):79–93CrossRefGoogle Scholar
  34. 34.
    Sarlin P, Yao Z, Eklund T (2012) A framework for state transitions on the self-organizing map: some temporal financial applications. Intell Syst Account Financ Manag 19(3):189–203CrossRefGoogle Scholar
  35. 35.
    Ferreira de Oliveira MC, Levkowitz H (2003) From visual data exploration to visual data mining: a survey. IEEE Trans Visual Comput Graphics 9(3):378–394CrossRefGoogle Scholar
  36. 36.
    Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2):111–126CrossRefzbMATHGoogle Scholar
  37. 37.
    Sarlin P (1999) Data and dimension reduction for visual financial performance analysis. TUCS Technical Reports. TUCSGoogle Scholar
  38. 38.
    Lee SC, Suh YH, Kim JK, Lee KJ (2004) A cross-national market segmentation of online game industry using SOM. Expert Syst Appl 27(4):559–570CrossRefGoogle Scholar
  39. 39.
    Vellido A, Lisboa P, Meehan K (1999) Segmentation of the on-line shopping market using neural networks. Expert Syst Appl 17(4):303–314CrossRefGoogle Scholar
  40. 40.
    Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586–600CrossRefGoogle Scholar
  41. 41.
    Li H (2005) Data visualization of asymmetric data using Sammon mapping and applications of self-organizing maps. University of Maryland, (College Park, Md.)Google Scholar
  42. 42.
    Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244CrossRefGoogle Scholar
  43. 43.
    Theodoridis S, Koutroumbas K (2008) Pattern recognition. Elsevier Science, AmsterdamGoogle Scholar
  44. 44.
    Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRefGoogle Scholar
  45. 45.
    Hubert L, Schultz J (1976) Quadratic assignment as a general data-analysis strategy. Br J Math Stat Psychol 29(2):190–241CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B (Stat Methodol) 63(2):411–423CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Rousseeuw PJ, Kaufman L (1990) Finding groups in data: an introduction to cluster analysis. Wiley-Interscience, HobokenGoogle Scholar
  49. 49.
    Kohonen T (1988) The ‘neural’ phonetic typewriter. Computer 21(3):11–22. doi: 10.1109/2.28 CrossRefGoogle Scholar
  50. 50.
    Eklund T, Back B, Vanharanta H, Visa A (2003) Using the self-organizing map as a visualization tool in financial benchmarking. Inf Vis 2(3):171–181CrossRefGoogle Scholar
  51. 51.
    Sarlin P, Marghescu D (2011) Visual predictions of currency crises using self-organizing maps. Intell Syst Account Financ Manag 18(1):15–38CrossRefGoogle Scholar
  52. 52.
    Afolabi MO, Olude O (2007) Predicting stock prices using a hybrid Kohonen self organizing map (SOM). In: Proceedings of the 40th annual Hawaii international conference on system sciences, IEEE, Big Island, Hawaii, USAGoogle Scholar
  53. 53.
    Hsu S-H, Hsieh JP-A, Chih T-C, Hsu K-C (2009) A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression. Expert Syst Appl 36(4):7947–7951CrossRefGoogle Scholar
  54. 54.
    Sulkava M, Hollmén J (2003) Finding profiles of forest nutrition by clustering of the self-organizing map. In: Proceedings of the workshop on self-organizing maps, Springer, Kitakyushu, JapanGoogle Scholar
  55. 55.
    Luyssaert S, Sulkava M, Raitio H, Hollmén J (2004) Evaluation of forest nutrition based on large-scale foliar surveys: are nutrition profiles the way of the future? J Environ Monit 6(2):160–167CrossRefGoogle Scholar
  56. 56.
    SOMine (2009), Viscovery SOMine user manual, Austria, ViennaGoogle Scholar
  57. 57.
    Reinartz WJ, Kumar V (2003) The impact of customer relationship characteristics on profitable lifetime duration. J Mark 67(1):77–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Zhiyuan Yao
    • 1
  • Peter Sarlin
    • 1
  • Tomas Eklund
    • 1
  • Barbro Back
    • 1
  1. 1.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland

Personalised recommendations