Neural Computing and Applications

, Volume 23, Issue 3–4, pp 645–655 | Cite as

Analysis of electricity bills using visual continuous maps

  • A. Morán
  • J. J. Fuertes
  • M. Domínguez
  • M. A. Prada
  • S. Alonso
  • P. Barrientos
New applications of Artificial Neural Networks in Modeling & Control

Abstract

The information from the electricity bills of an institution such as the University of León, with several billing points, constitutes a high-dimensional data set which is quite complicated to visualize at a glance. The use of techniques for dimensionality reduction enables to obtain a two-dimensional representation of the original data set which highlights main features in data and is easier to visualize. If these techniques are combined with interpolation methods, the resulting continuous maps allow comparison and interpretation of a whole range of possible electric data sets, not only the original one. These tools allow us to generate interactive maps that can be used by untrained people to exploit and analyze the information in electricity bills, detect penalties due to a power demand excess or power factor decrease, and make decisions with regard to electricity contracts.

Keywords

Dimensionality reduction Neural networks Electricity consumption Data visualization 

Notes

Acknowledgments

A. Morán was supported by a grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund. This work was supported in part by the Spanish Ministerio de Ciencia e Innovación (MICINN) and the European FEDER funds under grant DPI2009-13398-C02-02.

References

  1. 1.
    Bae SH, Choi JY, Qiu J, Fox GC (2010) Dimension reduction and visualization of large high-dimensional data via interpolation. In: Proceedings of the 19th ACM international symposium on high performance distributed computing, ACM, pp 203–214.Google Scholar
  2. 2.
    Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems, vol 14. MIT Press, pp 585–591.Google Scholar
  3. 3.
    Bertoldi P, Atanasiu B (2009) Electricity consumption and efficiency trends in European Union. Tech. rep., European Commission. Joint Research Centre. Institute for Energy. doi:10.2788/39332
  4. 4.
    Demartines P, Hérault J (1997) Curvilinear component analysis: a self organizing neural network for non linear mapping of data sets. IEEE Trans Neural Netw 8:148–154CrossRefGoogle Scholar
  5. 5.
    Díaz I, Díez AB, Cuadrado AA (2001) Complex process visualization through continuous feature maps using radial basis functions. In: Dorffner G, Bischof H, Hornik K (eds) Proceedings of ICANN 2001, international conference on artificial neural networks, vol 2130. Vienna, Austria, pp 443–449Google Scholar
  6. 6.
    Dong B, Cao C, Lee SE (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy Build 37(5):545–553. doi:10.1016/j.enbuild.2004.09.009 CrossRefGoogle Scholar
  7. 7.
    Eckerson WW (1995) Three tier client/server architectures: achieving scalability, performance, and efficiency in client/server applications. Open Inf Syst 3(20):46–50Google Scholar
  8. 8.
    European Union: Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market in electricity. (1997)Google Scholar
  9. 9.
    García J, Díaz I, Álvarez I, Pérez D, Ordoñez D, Domínguez M (2011) Spectrogram analysis using manifold learning. In: Proceedings of the 5th international scientific conference on physics and control, PHYSCON2011Google Scholar
  10. 10.
    Gershenfeld N, Samouhos S, Nordman B (2010) Intelligent infrastructure for energy efficiency. Science 327(5969):1086–1088. doi:10.1126/science.1174082 CrossRefGoogle Scholar
  11. 11.
    Hinton GE, Roweis S (2002) Stochastic neighbor embedding. In: Becker TS, Obermayer K (eds) Advances in neural information processing systems, vol 15. MIT Press, Cambridge, pp 833–840Google Scholar
  12. 12.
    Jamasb T, Pollitt MG (2005) Electricity market reform in the European Union: review of progress towards liberalisation and integration. MIT-CEEPR (Series) 05-003WPGoogle Scholar
  13. 13.
    Janssen R (2004) Towards energy efficient buildings in Europe. Report, The European alliance of companies for energy efficiency in buildings, LondonGoogle Scholar
  14. 14.
    Kohonen T (1990) The self-organizing map. In: Proceedings of the IEEE, vol 78. pp 1464–1480Google Scholar
  15. 15.
    Kruskal JB, Wish M (1978) Multidimensional scaling. Sage university paper series on quantitative application in the social sciences pp 7–11Google Scholar
  16. 16.
    Lee JA, Lendasse A, Donckers N, Verleysen M (2000) A robust nonlinear projection method, pp 13–20Google Scholar
  17. 17.
    Lee JA, Lendasse A, Verleysen M (2004) Nonlinear projection with curvilinear distances: isomap versus curvilinear distance analysis. Neurocomputing 57:49–76CrossRefGoogle Scholar
  18. 18.
    Morán A, Fuertes JJ, Prada MA, Alonso S, Barrientos P, Domínguez M, Díaz I (2012) Analysis of electricity consumption profiles by means of dimensionality reduction techniques. In: Engineering applications of neural networks, vol 311. Springer, BerlinGoogle Scholar
  19. 19.
    Pérez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40(3):394–398. doi:10.1016/j.enbuild.2007.03.007 CrossRefGoogle Scholar
  20. 20.
    Reas C, Fry B (2007) Processing: a programming handbook for visual designers and artists. MIT Press, CambridgeGoogle Scholar
  21. 21.
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRefGoogle Scholar
  22. 22.
    Sammon JW Jr (1969) A non-linear mapping for data structure analysis. IEEE Trans Comput 18:401–409CrossRefGoogle Scholar
  23. 23.
    Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576CrossRefGoogle Scholar
  24. 24.
    Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRefGoogle Scholar
  25. 25.
    Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605MATHGoogle Scholar
  26. 26.
    Zaknich A (1998) Introduction to the modified probabilistic neural network for general signal processing applications. IEEE Trans Signal Process 46(7):1980–1990. doi:10.1109/78.700969 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • A. Morán
    • 1
  • J. J. Fuertes
    • 1
  • M. Domínguez
    • 1
  • M. A. Prada
    • 1
  • S. Alonso
    • 1
  • P. Barrientos
    • 1
  1. 1.Grupo de Investigación SUPPRESS, Instituto de Automática y Fabricación, Escuela de IngenieríasUniversidad de LeónLeónSpain

Personalised recommendations