Neural Computing and Applications

, Volume 24, Issue 6, pp 1451–1464 | Cite as

An experimental characterization of reservoir computing in ambient assisted living applications

  • Davide Bacciu
  • Paolo Barsocchi
  • Stefano Chessa
  • Claudio Gallicchio
  • Alessio Micheli
Original Article

Abstract

In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks.

Keywords

Ambient assisted living Reservoir computing Wireless sensor networks Indoor user movement forecasting 

References

  1. 1.
    AAL (2009) Ambient assisted living roadmap. http://www.aaliance.eu/public/documents/aaliance-roadmap/
  2. 2.
    Antonelo EA, Schrauwen B, Campenhout JMV (2007) Generative modeling of autonomous robots and their environments using reservoir computing. Neural Proc Lett 26(3):233–249CrossRefGoogle Scholar
  3. 3.
    Antonelo EA, Schrauwen B, Stroobandt D (2008) Event detection and localization for small mobile robots using reservoir computing. Neural Netw 21(6):862–871CrossRefGoogle Scholar
  4. 4.
    Bacciu D, Gallicchio C, Micheli A, Chessa S, Barsocchi P (2011) Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Bhatt M, Guesgen HW, Augusto JC (eds) Proceedings of the IJCAI workshop on space, time and ambient intelligence (STAMI) 2011, pp 1–6Google Scholar
  5. 5.
    Bacciu D, Chessa S, Gallicchio C, Lenzi A, Micheli A, Pelagatti S (2012) A general purpose distributed learning model for robotic ecologies. In: Robot Control—10th IFAC symposium on robot control, vol 10(1), pp 435–440. doi:10.3182/20120905-3-HR-2030.00178
  6. 6.
    Bahl P, Padmanabhan V (2000) RADAR: an in-building Rf-based user location and tracking system. In: Proceedings of INFOCOM 2000. 19th Annual joint conference of the IEEE Comp. and Comm. Soc. vol 2, pp 775–784. doi:10.1109/INFOCOM.2000.832252
  7. 7.
    Barsocchi P, Lenzi S, Chessa S, Giunta G (2009) A novel approach to indoor RSSI localization by automatic calibration of the wireless propagation model. In: IEEE 69th vehicular Tech. Conf., pp 1–5. doi:10.1109/VETECS.2009.5073315
  8. 8.
    Barsocchi P, Lenzi S, Chessa S, Giunta G (2009) Virtual calibration for RSSI-based indoor localization with IEEE 802.15.4. In: 2009 IEEE international conference on Comm. ICC ’09, pp 1–5. doi:10.1109/ICC.2009.5199566
  9. 9.
    Battiti R, Villani A, Le Nhat T (2002) Neural network models for intelligent networks: deriving the location from signal patterns. In: Proceedings of AINS2002, CiteseerGoogle Scholar
  10. 10.
    Boedecker J, Obst O, Mayer N, Asada M (2009) Initialization and self-organized optimization of recurrent neural network connectivity. HFSP J 3(5):340–349CrossRefGoogle Scholar
  11. 11.
    Brunato M, Battiti R (2005) Statistical learning theory for location fingerprinting in wireless LANs. Comput Netw ISDN Syst 47(6):825–845. doi:10.1016/j.comnet.2004.09.004
  12. 12.
    Büsing L, Schrauwen B, Legenstein R (2009) Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput Appl 22(5):1272–1311CrossRefGoogle Scholar
  13. 13.
    Chang M, Terzis A, Bonnet P (2009) Mote-based online anomaly detection using echo state networks. In: Krishnamachari B, Suri S, Heinzelman W, Mitra U (eds) Distributed computing in sensor systems, lecture notes in computer science, vol 5516. Springer, Berlin, pp 72–86Google Scholar
  14. 14.
    EvAAL (2011) The 1st evaal competition, evaluating aal systems through competitive benchmarking. Special theme on Indoor Localization and Tracking, AAL Forum proceedings, valencia, ESGoogle Scholar
  15. 15.
    Fette G, Eggert J (2005) Short term memory and pattern matching with simple echo state networks. In: Proceedings of the international conference on artificial neural networks (ICANN), Springer, Lecture Notes in Computer Science, vol 3696, pp 13–18Google Scholar
  16. 16.
    Gallicchio C, Micheli A (2010) A markovian characterization of redundancy in echo state networks by PCA. In: Proceedings of the European symposium on artificial neural networks (ESANN) 2010, d-side, pp 321–326Google Scholar
  17. 17.
    Gallicchio C, Micheli A (2011) Architectural and markovian factors of echo state networks. Neural Netw 24(5):440–456. doi:10.1016/j.neunet.2011.02.002 Google Scholar
  18. 18.
    Gallicchio C, Micheli A, Barsocchi P, Chessa S (2012) User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Mobile lightweight wireless systems (Mobilight 2011), lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 81. Springer, Berlin, pp 151–168. doi:10.1007/978-3-642-29479-2_12
  19. 19.
    Gärtner T (2003) A survey of kernels for structured data. SIGKDD Explor Newsl 5:49–58CrossRefGoogle Scholar
  20. 20.
    Hajnal M, Lorincz A (2006) Critical echo state networks. In: Proceedings of the international conference on artificial neural networks (ICANN) 2006, pp 658–667Google Scholar
  21. 21.
    Hartland C, Bredeche N (2007) Using echo state networks for robot navigation behavior acquisition. In: IEEE international conference on robotics and biomimetics, IEEE, pp 201–206Google Scholar
  22. 22.
    Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. Tech. rep., GMD—German National Research Institute for Computer ScienceGoogle Scholar
  23. 23.
    Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Sci Agric 304(5667):78–80CrossRefGoogle Scholar
  24. 24.
    Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw 20(3):335–352CrossRefMATHGoogle Scholar
  25. 25.
    Kolen J, Kremer S (eds) (2001) A field guide to dynamical recurrent networks. IEEE Press, ParsippanyGoogle Scholar
  26. 26.
    Kontkanen P, Myllymaki P, Roos T, Tirri H, Valtonen K, Wettig H (2004) Topics in probabilistic location estimation in wireless networks. In: Personal, indoor and mobile radio communications, 2004. PIMRC 2004. 15th IEEE International Symposium on, vol 2, pp 1052–1056. doi:10.1109/PIMRC.2004.1373859
  27. 27.
    Kushki A, Plataniotis K, Venetsanopoulos AN (2007) Kernel-based positioning in wireless local area networks. IEEE Trans Mobile Comp 6(6):689–705. doi:10.1109/TMC.2007.1017 Google Scholar
  28. 28.
    Legenstein RA, Maass W (2007) Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw 20(3):323–334CrossRefMATHGoogle Scholar
  29. 29.
    Liu H, Darabi H, Banerjee P, Liu J (2007) Survey of wireless indoor positioning techniques and systems. Systems, man, and cybernetics, part C: applications and reviews. IEEE Trans 37(6):1067–1080. doi:10.1109/TSMCC.2007.905750 Google Scholar
  30. 30.
    Lukosevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149CrossRefGoogle Scholar
  31. 31.
    Luo X, OBrien WJ, Julien CL (2011) Comparative evaluation of received signal-strength index (RSSI) based indoor localization techniques for construction jobsites. Adv Eng Inf 25(2):355–363CrossRefGoogle Scholar
  32. 32.
    Maass W, Natschlager T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560. doi:10.1162/089976602760407955 Google Scholar
  33. 33.
    Obst O (2009) Distributed fault detection in sensor networks using a recurrent neural network. Tech. rep., CoRR, abs/0906.4154Google Scholar
  34. 34.
    Oubbati M, Kord B, Palm G (2010) Learning robot-environment interaction using echo state networks. In: Proceedings of the 11th international conference on Simul. of adapt. behavior, Springer-Verlag, SAB’10, pp 501–510Google Scholar
  35. 35.
    Pan JJ, Kwok J, Yang Q, Chen Y (2006) Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing. IEEE Tran Knowl Data Eng 18(9):1181–1193. doi:10.1109/TKDE.2006.145 Google Scholar
  36. 36.
    Rodan A, Tiňo P (2011) Minimum complexity echo state network. IEEE Trans Neural Netw 22(1):131 –144CrossRefGoogle Scholar
  37. 37.
    Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with O(N) complexity. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN) 2004, vol 2, pp 843–848Google Scholar
  38. 38.
    Steil JJ (2006) Online stability of backpropagation-decorrelation recurrent learning. Neurocomputing 69(7–9):642–650CrossRefGoogle Scholar
  39. 39.
    Tiňo P, Dorffner G (2001) Predicting the future of discrete sequences from fractal representations of the past. Mach Learn 45(2):187–217CrossRefMATHGoogle Scholar
  40. 40.
    Tiňo P, Cernanský M, Benusková L (2004) Markovian architectural bias of recurrent neural networks. IEEE Trans Neural Netw 15(1):6–15CrossRefGoogle Scholar
  41. 41.
    Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D (2007) An experimental unification of reservoir computing methods. Neural Netw 20(3):391–403CrossRefMATHGoogle Scholar
  42. 42.
    Waegeman T, Antonelo E, Wyffels F, Schrauwen B (2009) Modular reservoir computing networks for imitation learning of multiple robot behaviors. In: 8th IEEE international symposium on comput. intelligence in robotics and autom., IEEE, pp 27–32Google Scholar
  43. 43.
    Wu CL, Fu LC, Lian FL (2004) Wlan location determination in e-home via support vector classification. In: Networking, sensing and control, 2004 IEEE international conference on, vol 2, pp 1026–1031Google Scholar
  44. 44.
    Youssef M, Agrawala A (2005) The horus WLAN location determination system. In: MobiSys’05: proceedings of the 3rd international conference on mobile Sys. appl. and services. ACM, New York, pp 205–218. doi:10.1145/1067170.1067193
  45. 45.
    Zàruba GV, Huber M, Kamangar FA, Chlamtac I (2007) Indoor location tracking using RSSI readings from a single wi-fi access point. Wireless Netw 13:221,235Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Davide Bacciu
    • 1
  • Paolo Barsocchi
    • 2
  • Stefano Chessa
    • 1
  • Claudio Gallicchio
    • 1
  • Alessio Micheli
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Istituto di Scienze e Tecnologie dell’InformazioneConsiglio Nazionale delle RicerchePisaItaly

Personalised recommendations