Neural Computing and Applications

, Volume 24, Issue 6, pp 1269–1283 | Cite as

Robust t-distribution mixture modeling via spatially directional information

  • Taisong Xiong
  • Lei Zhang
  • Zhang Yi
Original Article


Finite mixture model (FMM) has been successfully applied to many practical applications in recent years. However, a significant shortcoming of the FMM with Gaussian distribution is that it is sensitive to noise. Recently, Student’s t-distribution with a heavier-tailed acting as a robust alternative to Gaussian distribution is getting more and more attentions. In this paper, we propose a new Student’s t-distribution finite mixture model which incorporates the spatial relationships between the pixels and simultaneously imposes spatial smoothness. In addition, the pixel’s neighbor directional information is also integrated into the proposed model. Furthermore, the pixels’ label probability proportions are explicitly represented as probability vectors to reduce the computational costs of the proposed model. We use the gradient descend method to estimate the unknown parameters of the proposed model. Comprehensive experiments are conducted on both synthetic and natural grayscale images. The experimental results demonstrate the superiority of the proposed model over some existing models.


Finite mixture model Student’s t-distribution Spatially directional information Image segmentation Gradient descent 



The authors would like to thank the anonymous reviewers for their valuable comments and suggestions, which greatly helped to improve the presentation quality of the paper. This work was supported by National Basic Research Program of China (973 Program) under Grant 2011CB302201, and National Nature Science Foundation of China under grant No. 60931160441 and No. 61003042.


  1. 1.
    Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefzbMATHGoogle Scholar
  2. 2.
    Li C, Xu C, Gui G, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254. doi: 10.1109/TIP.2010.2096950 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts. IEEE Trans Pattern Anal Mach Intell 26(2):147–159CrossRefGoogle Scholar
  4. 4.
    Felzenswalb PF, Zabih R (2011) Dynamic programming and graph algorithms in computer vision. IEEE Trans Pattern Anal Mach Intell 33(4):721–740. doi: 10.1109/TPAMI.2010.135 CrossRefGoogle Scholar
  5. 5.
    Richard S (2010) Computer vision: algorithms and applications. Springer, New YorkGoogle Scholar
  6. 6.
    McLachlan G, Peel D (2000) Finite mixture models. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  7. 7.
    Bishop C (2006) Pattern recognition and machine learning. Springer, New YorkzbMATHGoogle Scholar
  8. 8.
    Dempster P, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Stat Soc 39:1–38zbMATHMathSciNetGoogle Scholar
  9. 9.
    Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions,and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741CrossRefzbMATHGoogle Scholar
  10. 10.
    Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc Ser B 48(3):259C302MathSciNetGoogle Scholar
  11. 11.
    Celeux G, Forbes F, Peyrard N (2003) EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recogn 36(1):131–144. doi: 10.1016/S0031-3203(02)00027-4 CrossRefzbMATHGoogle Scholar
  12. 12.
    Forbes F, Peyrard N (2003) Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans Pattern Anal Mach Intell 25(9):1089C1101. doi: 10.1109/TPAMI.2003.1227985 CrossRefGoogle Scholar
  13. 13.
    Sanjay GS, Hebert TJ (1998) Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans Image Process 7:1014–1028. doi: 10.1109/83.701161 CrossRefGoogle Scholar
  14. 14.
    Blekas K, Likas A, Galatsanos N, Lagaris I (2005) A spatially constrained mixture model for image segmentation. IEEE Trans Neural Netw 16:494–498. doi: 10.1109/TNN.2004.841773 CrossRefGoogle Scholar
  15. 15.
    Nikou C, Galatsanos N, Likas A (2007) A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans Image Process 16:1121–1130. doi: 10.1109/TIP.2007.891771 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Sfikas G, Nikou C, Galatsanos N, Heinrich C (2010) Spatially varying mixtures incorporating line processes for image segmentation. J Math Imaging Vis 36:91–110. doi: 10.1007/s10851-009-0174-x CrossRefMathSciNetGoogle Scholar
  17. 17.
    Thanh MN, Wu QM (2012) Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem. IEEE Trans Syst Man Cybern Part B 42:193–202. doi: 10.1093/comjnl/bxr032 CrossRefGoogle Scholar
  18. 18.
    Peel D, McLachlan GJ (2000) Robust mixture modelling using the t distribution. Stat Comput 10:335–344. doi: 10.1023/A:1008981510081 CrossRefGoogle Scholar
  19. 19.
    Sfikas G, Nikou C, Galatsanos N (2007) Robust image segmentation with mixtures of student’s t-distribution. In: IEEE international conference on image processing, pp 273–276Google Scholar
  20. 20.
    Chatzis SP, Kosmopoulos DI, Varvarigou TA (2008) Signal modeling and classification using a robust latent space model based on t distributions. IEEE Trans Signal Process 56:949–963. doi: 10.1109/TSP.2007.907912 CrossRefMathSciNetGoogle Scholar
  21. 21.
    Chatzis SP, Kosmopoulos DI (2011) A variational Bayesian methodology for hidden Markov models utilizing student’s-t mixtures. Pattern Recogn 44:295–306. doi: 10.1016/j.patcog.2010.09.001 CrossRefzbMATHGoogle Scholar
  22. 22.
    Thanh MN, Wu QM (2012) Robust student’s-t mixture model with spatial constraints and its application in medical image segmentation. IEEE Trans Med Imaging 31:103–116. doi: 10.1109/TMI.2011.2165342 CrossRefGoogle Scholar
  23. 23.
    Xiong T, Yi Z, Zhang L (2012) Grayscale image segmentation by spatially variant mixture model with student’s t-distribution. Multimed Tools Appl. doi: 10.1007/s11042-012-1336-1
  24. 24.
    Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi: 10.1109/42.906424 CrossRefGoogle Scholar
  25. 25.
    Meila M (2003) Comparing clusterings by the variation of information. Lect Notes Comput Sci 2777:173–187. doi: 10.1007/978-3-540-45167-9_14 CrossRefGoogle Scholar
  26. 26.
    Meila M (2005) Comparing clusterings—axiomatic view. In: International conference on machine learning, pp 577–584Google Scholar
  27. 27.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of IEEE conference on computer vision (ICCV2001), pp 416–423Google Scholar
  28. 28.
    Freixenet J, Munoz X, Raba D, Marti J, Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Proceedings of European conference on computer vision (ECCV2002) 408C422Google Scholar
  29. 29.
    Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29:929–944. doi: 10.1109/TPAMI.2007.1046 CrossRefGoogle Scholar
  30. 30.
    Svensen M, Bishop C (2005) Robust Bayesian mixture modelling. Neurocomputing 64:235–252. doi: 10.1016/j.neucom.-2004.11.018 CrossRefGoogle Scholar
  31. 31.
    Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis of finite mixture distributions. Wiley, HobokenzbMATHGoogle Scholar
  32. 32.
    Thanh MN, Wu QM, Ahuja S (2010) An extension of the standard mixture model for image segmentation. IEEE Trans Neural Netw 21:1326–1338. doi: 10.1109/TNN.2010.2054109 CrossRefGoogle Scholar
  33. 33.
    Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  34. 34.
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 4:461–464CrossRefGoogle Scholar
  35. 35.
    Winkler G (2006) Image analysis, random fields and Markov chain Monte Carlo methods, ser. stochastic modeling and applied probability, 2nd edn. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Machine Intelligence Laboratory, College of Computer ScienceSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations