Skip to main content
Log in

Design of wavelet neural networks based on symmetry fuzzy C-means for function approximation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Specifying the number and locations of the translation vectors for wavelet neural networks (WNNs) is of paramount significance as the quality of approximation may be drastically reduced if initialization of WNNs parameters was not done judiciously. In this paper, an enhanced fuzzy C-means algorithm, specifically the modified point symmetry–based fuzzy C-means algorithm (MPSDFCM), was proposed, in order to determine the optimal initial locations for the translation vectors. The proposed neural network models were then employed in approximating five different nonlinear continuous functions. Assessment analysis showed that integration of the MPSDFCM in the learning phase of WNNs would lead to a significant improvement in WNNs prediction accuracy. Performance comparison with the approaches reported in the literature in approximating the same benchmark piecewise function verified the superiority of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANNs:

Artificial neural networks

DSL:

Distance symmetry level

FCM:

Fuzzy C-means

GA:

Genetic algorithm

KM:

K-means

MLPs:

Multilayer perceptrons

MPSDFCM:

Modified point symmetry–based fuzzy C-means

MS:

Minkowski

MSE:

Mean-squared error

OSL:

Orientation symmetry level

PSD:

Point symmetry distance

PSDFCM:

Point symmetry–based fuzzy C-means

SSL:

Symmetry similarity level

SVMs:

Support vector machines

WNNs:

Wavelet neural networks

References

  1. Abiyev RH (2011) Fuzzy wavelet neural network based on fuzzy clustering and gradient techniques for time series prediction. Neural Comput Appl 20(2):249–259. doi:10.1007/s00521-010-0414-4

    Article  Google Scholar 

  2. Cao J, Lin X (2008) Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique. Eng Appl Artif Intel 21(8):1255–1263. doi:10.1016/j.engappai.2008.02.003

    Article  MathSciNet  Google Scholar 

  3. Cao JW, Lin ZP, Huang GB (2010) Composite function wavelet neural networks with extreme learning machine. Neurocomputing 73(7–9):1405–1416. doi:10.1016/j.neucom.2009.12.007

    Article  Google Scholar 

  4. Chen CH, Hsu CF (2010) Recurrent wavelet neural backstepping controller design with a smooth compensator. Neural Comput Appl 19(7):1089–1100. doi:10.1007/s00521-010-0347-y

    Article  Google Scholar 

  5. Chen JH, Bruns DD (1995) WaveARX neural-network development for system-identification using a systematic design synthesis. Ind Eng Chem Res 34(12):4420–4435

    Article  Google Scholar 

  6. Chung KL, Lin JS (2007) Faster and more robust point symmetry-based K-means algorithm. Pattern Recogn 40(2):410–422. doi:10.1016/j.patcog.2005.09.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat 11(1):86–92

    Article  Google Scholar 

  8. Gougam LA, Tribeche M, Mekideche-Chafa F (2008) A systematic investigation of a neural network for function approximation. Neural Netw 21(9):1311–1317. doi:10.1016/j.neunet.2008.06.015

    Article  MATH  Google Scholar 

  9. Gutierrez JM, Gutes A, Cespedes F, del Valle M, Munoz R (2008) Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds. Talanta 76(2):373–381. doi:10.1016/j.talanta.2008.03.009

    Article  Google Scholar 

  10. Han M, Yin J (2008) The hidden neurons selection of the wavelet networks using support vector machines and ridge regression. Neurocomputing 72(1–3):471–479. doi:10.1016/j.neucom.2007.12.009

    Article  Google Scholar 

  11. Hargreaves JC, Abe-Ouchi A (2003) Timing of ice-age terminations determined by wavelet methods. Paleoceanography 18(2). doi:10.1029/2002pa000825

  12. Ho DWC, Zhang PA, Xu JH (2001) Fuzzy wavelet networks for function learning. IEEE T Fuzzy Syst 9(1):200–211

    Article  Google Scholar 

  13. Hsu CC, Lu TC (2008) Minimum-phase criterion on sampling time for sampled-data interval systems using genetic algorithms. Appl Soft Comput 8(4):1670–1679. doi:10.1016/j.asoc.2008.01.009

    Article  Google Scholar 

  14. Hwang K, Mandayam S, Udpa SS, Udpa L, Lord W, Atzal M (2000) Characterization of gas pipeline inspection signals using wavelet basis function neural networks. NDT E Int 33(8):531–545

    Article  Google Scholar 

  15. Karatepe E, Alci M (2005) A new approach to fuzzy wavelet system modeling. Int J Approx Reason 40(3):302–322. doi:10.1016/j.ijar.2005.06.003

    Article  MathSciNet  Google Scholar 

  16. Lin C-J (2006) Wavelet neural networks with a hybrid learning approach. J Inf Sci Eng 22:1367–1387

    Google Scholar 

  17. MathWorks (2010) Matlab. The MathWorks Inc, Massachusetts

    Google Scholar 

  18. Ortiz-Garcia EG, Salcedo-Sanz S, Perez-Bellido AM, Portilla-Figueras JA (2009) Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions. Neurocomputing 72(16–18):3683–3691. doi:10.1016/j.neucom.2009.07.009

    Article  Google Scholar 

  19. Oussar Y, Dreyfus G (2000) Initialization by selection for wavelet network training. Neurocomputing 34:131–143

    Article  MATH  Google Scholar 

  20. Ramuhalli P, Udpa L, Udpa SS (2002) Electromagnetic NDE signal inversion by function-approximation neural networks. IEEE T Magn 38(6):3633–3642. doi:10.1109/Tmag.2002.804817

    Article  Google Scholar 

  21. Shamir R, Hartuv E, Schmitt AO, Lange J, Meier-Ewert S, Lehrach H (2000) An algorithm for clustering cDNA fingerprints. Genomics 66(3):249–256. doi:10.1006/geno.2000.6187

    Article  Google Scholar 

  22. Singh M, Srivastava S, Hanmandlu M, Gupta JRP (2009) Type-2 fuzzy wavelet networks (T2FWN) for system identification using fuzzy differential and Lyapunov stability algorithm. Appl Soft Comput 9(3):977–989. doi:10.1016/j.asoc.2008.03.017

    Article  Google Scholar 

  23. Srivastava S, Singh M, Hanmandlu M, Jha AN (2005) New fuzzy wavelet neural networks for system identification and control. Appl Soft Comput 6(1):1–17. doi:10.1016/j.asoc.2004.10.001

    Article  Google Scholar 

  24. Su MC, Chou CH, Hsieh CC (2005) Fuzzy C-means algorithm with a point symmetry distance. Int J Fuzzy Syst 7:175–181

    Google Scholar 

  25. Su MS, Chou CH (2001) A modified version of the K-means algorithm with a distance based on cluster symmetry. IEEE T Pattern Anal 23(6):674–680

    Article  Google Scholar 

  26. Tzeng ST (2010) Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification. Fuzzy Set Syst 161(19):2585–2596. doi:10.1016/j.fss.2010.06.002

    Article  MathSciNet  Google Scholar 

  27. Wang J, Xiao J, Peng H, Gao X (2005) Constructing fuzzy wavelet network modeling. Int J Inform Techno 11(6):68–74

    Google Scholar 

  28. Wei M, Jin S, Wang I (2004) Defect characteristic prediction of pipeline by means of wavelet neural network based on hierarchical clustering algorithm. In: Proceedings of biennial international pipeline conference, pp 921–924

  29. Yao S, Wei CJ, He ZY (1996) Evolving wavelet neural networks for function approximation. Electron Lett 32(4):360–361

    Article  Google Scholar 

  30. Zainuddin Z, Ong P (2012) An effective and novel wavelet neural network approach in classifying type 2 diabetics. Neural Netw World 22(5):407–428

    Google Scholar 

  31. Zainuddin Z, Ong P (2011) Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data. Appl Soft Comput 11(8):4866–4874. doi:10.1016/j.asoc.2011.06.013

    Article  Google Scholar 

  32. Zainuddin Z, Ong P (2011) Reliable multiclass cancer classification of microarray gene expression profiles using an improved wavelet neural network. Expert Syst Appl 38(11):13711–13722. doi:10.1016/j.eswa.2011.04.164

    Google Scholar 

  33. Zainuddin Z, Wan Daud WR, Ong P, Shafie A (2011) Wavelet neural networks applied to pulping of oil palm fronds. Bioresour Technol 102:10978–10986. doi:10.1016/j.biortech.2011.09.080

    Article  Google Scholar 

  34. Zhang QG, Benveniste A (1992) Wavelet networks. IEEE T Neural Netw 3(6):889–898

    Article  Google Scholar 

  35. Zhou B, Shi AG, Cai F, Zhang YS (2004) Wavelet neural networks for nonlinear time series analysis. Lect Notes Comput Sci 3174:430–435

    Article  Google Scholar 

Download references

Acknowledgment

The second author is grateful to Universiti Sains Malaysia, which supplied a generous Post-Doctoral Fellowship and made it possible to undertake this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarita Zainuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainuddin, Z., Ong, P. Design of wavelet neural networks based on symmetry fuzzy C-means for function approximation. Neural Comput & Applic 23 (Suppl 1), 247–259 (2013). https://doi.org/10.1007/s00521-013-1350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1350-x

Keywords

Navigation