Neural Computing and Applications

, Volume 23, Issue 7–8, pp 2465–2469 | Cite as

Soft computing for prediction of river pipeline scour depth

  • Hazi Mohammad AzamathullaEmail author
  • Mohd. Azlan Mohd. Yusoff
Original Article


This study presents gene-expression programming (GEP) as an alternative soft computing tool for the prediction of scour below underwater pipeline across river. Actual laboratory measurements were used for the model development. The scour depth was formulated in terms of several influencing parameters. The results indicate that GEP is a very promising approach to predict the river pipeline scour depth.


Local scour Soft computing Gene-expression programming Pipelines 


  1. 1.
    Chiew YM (1991) Prediction of maximum scour depth at submarine pipelines. J Hydraul Eng 117(4):452–466CrossRefGoogle Scholar
  2. 2.
    Chao JL, Hennessy PV (1972) Local scour under ocean outfall pipe-lines. Water Pollut Control Fed 44(7):1443–1447Google Scholar
  3. 3.
    Kjeldsen SP, Gjørsvik O, Bringaker KG, Jacobsen J (1973) Local scour near offshore pipelines. In: Proceedings of 2nd international conference on port and ocean engineering under Arctic conditions, University of Iceland, pp 308–331Google Scholar
  4. 4.
    Ibrahim A, Nalluri C (1986) Scour prediction around marine pipelines. In: Proceedings of 5th international symposium on offshore mechanics and Arctic engineering, pp 679–684Google Scholar
  5. 5.
    Bijker EW, Leeuwestein W (1984) Interaction between pipelines and the seabed under influence of waves and currents. In: Proceedings of Symposium on International Union of Theoretical Applied Mechanics/International Union of Geology and Geophysics, pp 235–242Google Scholar
  6. 6.
    Moncada-M AT, Aguirre-Pe J (1999) Scour below pipeline in river crossings. J Hydraul Eng 125(9):953–958CrossRefGoogle Scholar
  7. 7.
    Chen C, Zhang J (2009) A review on scour modeling below pipelines. In: Proceedings of the Pipelines 2009: Infrastructure’s Hidden Assets, pp 1019–1028.
  8. 8.
    Sumer BM, Truelsen C, Sichmann T, Fredsoe J (2001) Onset of scour below pipelines and self-burial. Coast Eng 42(4):313–335Google Scholar
  9. 9.
    Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194CrossRefGoogle Scholar
  10. 10.
    Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274CrossRefGoogle Scholar
  11. 11.
    Alavi AH, Gandomi AH (2012) Energy-based models for assessment of soil liquefaction. Geosci Front 3(4):541–555CrossRefGoogle Scholar
  12. 12.
    Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181(23):5227–5239CrossRefGoogle Scholar
  13. 13.
    Yang XS, Gandomi AH, Talatahari S, Alavi AH (2012) Metaheuristisin water, geotechnical & transportation engineering. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Azamathulla HMd, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of ski-jump bucket. J Hydraul Eng 131(10):898–908CrossRefGoogle Scholar
  15. 15.
    Azamathulla HMd, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698CrossRefGoogle Scholar
  16. 16.
    Keshavarzi A, Gazni R, Homayoon SR (2012) Prediction of scouring around an arch-shaped bed sill using Neuro-Fuzzy model. Appl Soft Comput J 12(1):486–493CrossRefGoogle Scholar
  17. 17.
    Azamathulla HMd, Ghani AAb (2010) Genetic programming to predict river pipeline scour. Technical notes. J Pipeline Syst Eng Pract, vol 1, no 3 August, 2010Google Scholar
  18. 18.
    Azamathulla HMd, Zakaria NA (2011) Prediction of scour below submerged pipeline crossing a river using ANN. Water Sci Technol 63(10):2225–2230CrossRefGoogle Scholar
  19. 19.
    Azamathulla HMd, Guven A, Demir YK (2011) Linear genetic programming to scour below submerged pipeline. Ocean Eng 38(2011):995–1000CrossRefGoogle Scholar
  20. 20.
    Dey S, Singh NP (2008) Clear-water scour below underwater pipelines under steady flow. J Hydraul Eng 134(5):588–600CrossRefGoogle Scholar
  21. 21.
    Lim FH, Chiew YM (2001) Parametric study of riprap failure around bridge piers. J Hydraul Res 39(1):61–72CrossRefGoogle Scholar
  22. 22.
    Melville BW (1992) Local scour at bridge abutments. J Hydraul Eng 118(4):615–631CrossRefGoogle Scholar
  23. 23.
    Koza J (1992) Genetic programming, on the programming of computers by means of natural selection. MIT Press, CambridgezbMATHGoogle Scholar
  24. 24.
    Ferreira C (2001) Gene expression programming in problem solving. In: Proceedings of 6th online world conference on soft computing in industrial applications (invited tutorial), Springer, BerlinGoogle Scholar
  25. 25.
    Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129zbMATHGoogle Scholar
  26. 26.
    Guven A, Aytek A (2009) A new approach for stage-discharge relationship: gene-expression programming. J Hydrol Eng 14(8):812–820CrossRefGoogle Scholar
  27. 27.
    Wu Y, Chiew YM (2012) Three-dimensional scour at submarine pipelines. J Hydraul Eng 138(9):788–795CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Hazi Mohammad Azamathulla
    • 1
    Email author
  • Mohd. Azlan Mohd. Yusoff
    • 1
  1. 1.REDACUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations