Advertisement

Neural Computing and Applications

, Volume 23, Issue 6, pp 1597–1604 | Cite as

A low-cost decision-aided channel estimation method for Alamouti OSTBC

  • Paula M. Castro
  • Adriana Dapena
  • José A. García-NayaEmail author
  • Josmary Labrador
Original Article
  • 169 Downloads

Abstract

In wireless communication systems, channel state information (CSI) acquisition is typically performed at the receiver side every time a new frame is received, without taking into account whether it is really necessary or not. Considering the special case of the 2 × 1 Alamouti orthogonal space-time block code, this work proposes to reduce computational complexity associated with the CSI acquisition by including a decision rule to automatically determine the time instants when CSI must be again updated. Otherwise, a previous channel estimate is reused. The decision criterion has a very low computational complexity since it consists in computing the cross-correlation between preambles sent by the two transmit antennas. This allows us to obtain a considerable reduction on the complexity demanded by both supervised and unsupervised (blind) channel estimation algorithms. Such preambles do not penalize the spectral efficiency in the sense they are mandatory for frame detection as well as for time and frequency synchronization in current wireless communication systems.

Keywords

CSI acquisition Alamouti code Supervised and unsupervised estimation Hybrid adaptive algorithms Batch learning 

Notes

Acknowledgments

This work has been funded by Xunta de Galicia, Ministerio de Ciencia e Innovación of Spain, and FEDER funds of the European Union under grants with numbers 10TIC105003PR, 10TIC003CT, 09TIC008105PR, TEC2010-19545-C04-01, and CSD2008-00010.

References

  1. 1.
    Alamouti SM (1998) A simple transmit diversity technique for wireless communications. IEEE J Sel Areas Commun 16:1451–1458CrossRefGoogle Scholar
  2. 2.
    Bell A, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159CrossRefGoogle Scholar
  3. 3.
    Beres E, Adve R (2004) Blind channel estimation for orthogonal STBC in MISO systems. In: Proceedings of global telecommunications conference (GLOBECOM 2004), vol 4. pp 2323–2328Google Scholar
  4. 4.
    Cardoso JF, Souloumiac A (1993) non-Gaussian signals. IEEE Proc -F 140(6):362–370Google Scholar
  5. 5.
    Comon P, Jutten C (2010) Handbook of blind source separation, independent component analysis and applications. Academic Press, WalthamGoogle Scholar
  6. 6.
    Dapena A, Pérez-Iglesias H, Zarzoso V (2010) Blind channel estimation based on maximizing the eigenvalue spread of cumulant matrices in (2 × 1) Alamouti’s coding schemes. Wirel Commun Mob Comput. doi: 10.1002/wcm.992. (Article published online : 5 OCT 2010)
  7. 7.
    Gesbert D, Shan-Shiu D, Smith PJ, Nagui A (2003) From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J Sel Areas Commun 21:281–302CrossRefGoogle Scholar
  8. 8.
    Haykin S (1994) Neural networks a comprehensive foundation. Macmillan College Publishing Company, New YorkzbMATHGoogle Scholar
  9. 9.
    Stone JV (2004) Independent component analysis: a tutorial introduction. MIT Press, WalthamGoogle Scholar
  10. 10.
    Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Vía J, Santamaría I, Pérez J, Ramírez D (2006) Blind decoding of MISO-OSTBC systems based on principal component analysis. In: International conference on acoustic, speech and signal processing, vol IV. pp 545–549Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Paula M. Castro
    • 1
  • Adriana Dapena
    • 1
  • José A. García-Naya
    • 1
    Email author
  • Josmary Labrador
    • 1
  1. 1.Electronics and Systems Department, Facultad de InformáticaUniversity of A CoruñaA CoruñaSpain

Personalised recommendations