Neural Computing and Applications

, Volume 23, Issue 5, pp 1407–1419 | Cite as

Visualization maps based on SOM to analyze MIMO systems

  • J. J. Fuertes
  • M. Domínguez
  • I. Díaz
  • M. A. Prada
  • A. Morán
  • S. Alonso
Original Article


Knowledge extraction from large amounts of data is an effective approach for analysis and monitoring of industrial processes. The self-organizing map (SOM) is a useful method for this purpose, because it is able to discover low-dimensional structures on high-dimensional spaces and produce a mapping on an ordered low-dimensional space that can be visualized and preserves the most important relationships. With the aim to extract knowledge about the dynamics of industrial processes, we define 2D SOM maps that represent dynamic features which are useful for usual tasks in control engineering such as the analysis of the time response, the coupling among variables, or the difficulties in control of MIMO (multiple-input and multiple-output) systems. Those new maps make it possible to discover, increase or confirm knowledge about the system, spanned through the entire operation range. A well-known quadruple-tank MIMO system was used to test the usefulness of these maps. First, we perform an analysis of the theoretical dynamic behaviors obtained from the physical equations of the system. After that, we carry out an analysis of experimental data from an industrial pilot plant.


Self-organizing map Industrial processes Information visualization Dynamics MIMO system 



This work was supported in part by the Spanish Ministerio de Ciencia e Innovación (MICINN) and the European FEDER funds under grants DPI2009-13398-C02-01 and DPI2009-13398-C02-02. A. Morán was supported by a grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund.


  1. 1.
    Abonyi J, Nemeth S, Csaba V, Vesanto PAJ (2003) Process analysis and product quality estimation by self-organizing maps with an application to polyethylene production. Comput Ind 52(3):221–234. doi: 10.1016/S0166-3615(03)00128-3 CrossRefGoogle Scholar
  2. 2.
    Albertos P, Sala A (2004) Multivariable control systems: an engineering approach. Springer, LondonGoogle Scholar
  3. 3.
    Barreto GA, Araujo AFR (2002) Identification and control of dynamical systems using the self-organizing map. IEEE Trans Neural Netw 15(5):1244–1259. doi: 10.1109/TNN.2004.832825 CrossRefGoogle Scholar
  4. 4.
    Cho J, Principe JC, Erdogmus D, Motter MA (2006) Modeling and inverse controller design for an unmaned aerial vehicle based on the self-organizing map. IEEE Trans Neural Netw 17(2):445–460. doi: 10.1109/TNN.2005.863422 CrossRefGoogle Scholar
  5. 5.
    Corona F, Mulas M, Baratti R, Romagnoli J (2010) On the topological modeling and analysis of industrial process data using the som. Comput Chem Eng 34(12):2022–2032. doi: 10.1016/j.compchemeng.2010.07.002 CrossRefGoogle Scholar
  6. 6.
    Dayal B, MacGregor J (1997) Multi-output process identification. J Process Cont 7(4):269–282CrossRefGoogle Scholar
  7. 7.
    Díaz I, Cuadrado AA, Díez AB, Fuertes JJ, Domínguez M, Prada MA (2009) Visualization of MIMO process dynamics using local dynamic modelling with self organizing maps. In: Palmer-Brown D, Draganova C, Pimenidis E, Mouratidis H (eds) Engineering Applications of Neural Networks, Communications in Computer and Information Science, vol. 43, pp. 119–130. Springer, Berlin Heidelberg (2009). doi: 10.1007/978-3-642-03969-0_12
  8. 8.
    Díaz I, Cuadrado AA, Díez AB, Ojea G (2005) Modelado visual de procesos industriales. Revista Iberoamericana de Automática e Informática Industrial 2(4):101–112Google Scholar
  9. 9.
    Díaz I, Domínguez M, Cuadrado AA, Fuertes JJ (2008) A new approach to exploratory analysis of system dynamics using SOM. Application to industrial processes. Expert Syst Appl 34(4):2953–2965. doi: 10.1016/j.eswa.2007.05.031 CrossRefGoogle Scholar
  10. 10.
    Domínguez M, Reguera P, Fuertes JJ, Díaz I, Cuadrado AA (2007) Internet-based remote supervision of industrial processes using self-organizing maps. Eng Appl Artif Intell 20(6):757–765. doi: 10.1016/j.engappai.2006.11.017 CrossRefGoogle Scholar
  11. 11.
    Eckerson W (1995) Three tier client/server architectures: achieving scalability, performance, and efficiency in client/server applications. Open Inf Syst 3(20):46–50Google Scholar
  12. 12.
    Fuertes JJ, Domínguez M, Reguera P, Prada MA, Díaz I, Cuadrado AA (2010) Visual dynamic model based on self-organizing maps for supervision and fault detection in industrial processes. Eng Appl Artif Intell 23(1):8–17. doi: 10.1016/j.engappai.2009.06.001 CrossRefGoogle Scholar
  13. 13.
    Fuertes JJ, Prada MA, Domínguez M, Reguera P, Díaz I, Díez AB (2008) Visualization of dynamic parameters of a multivariable system using Self-organizing maps. In: 17th IFAC World Congress. Seoul. doi: 10.3182/20080706-5-KR-1001.01863
  14. 14.
    Heikkinen M, Hiltunen T, Liukkonen M, Kettunen A, Kuivalainen R, Hiltunen Y (2009) A modelling and optimization system for fluidized bed power plants. Expert Syst Appl 36(7):10,274–10,279. doi: 10.1016/j.eswa.2009.01.072 CrossRefGoogle Scholar
  15. 15.
    Johansson KH (2000) The quadruple–tank process: a multivariable laboratory process with an adjustable zero. IEEE Transact Control Syst Technol 8(3):456–465MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kohonen T (1990) The self-organizing map. In: Proceedings of the IEEE 78:1464–1480Google Scholar
  17. 17.
    Kohonen T (2001) Self-organizing maps, 3rd edn. Springer, New York Inc, Secaucus, NJCrossRefGoogle Scholar
  18. 18.
    Kohonen T, Oja E, Simula O, Visa A, Kangas J (1996) Engineering applications of the self-organizing map. Proc IEEE 84(10):1358–84CrossRefGoogle Scholar
  19. 19.
    Kwak S, Lim C, Metzger R Jr, Rodriguez A (1999) Multivariable submarine control system analysis and design using an interactive visualization tool. In: Proc. of the 1999 American Control Conference 5:3427–3431. IEEEGoogle Scholar
  20. 20.
    Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Information science and statistics. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Ljung L (2002) Identification for control: simple process models. Proceedings of the 41st IEEE Conference on Decision and Control, 2002 4:4652–4657. doi: 10.1109/CDC.2002.1185112
  22. 22.
    Oja M, Kaski S, Kohonen T (2003) Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput Surv 3:1–156Google Scholar
  23. 23.
    Peng H, Wu J, Inoussa G, Deng Q, Nakano K (2009) Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model. Control Eng Pract 17(1):59–66. doi: 10.1016/j.conengprac.2008.05.005 CrossRefGoogle Scholar
  24. 24.
    Pölzlbauer G, Dittenbach M, Rauber A (2006) Advanced visualization of self-organizing maps with vector fields. Neural Netw (19):911–922. doi: 10.1016/j.neunet.2006.05.013
  25. 25.
    Principe J, Wang L, Motter M (1998) Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc IEEE 86(11):2240–2258CrossRefGoogle Scholar
  26. 26.
    Skogestad S, Postlethwaite I (1996) Multivariable Feedback Control – Analysis and Design. Wiley, ChichesterGoogle Scholar
  27. 27.
    Souza LGM, Barreto GA (2010) On building local models for inverse system identification with vector quantization algorithms. Neurocomputing 73(10–12):1993–2005. doi: 10.1016/j.neucom.2009.10.021 CrossRefGoogle Scholar
  28. 28.
    Tasdemir K, Merényi E (2009) Exploiting data topology in visualization and clustering of self-organizing maps. IEEE Transact Neural Netw 20(4):549–562. doi: 10.1109/TNN.2008.2005409 CrossRefGoogle Scholar
  29. 29.
    Venkatasubramanian V, Rengaswamy R, Kavuri S, Yin K (2003) A review of process fault detection and diagnosis part III: Process history based methods. Comput Chem Eng 27(3):327–346. doi: 10.1016/S0098-1354(02)00162-X CrossRefGoogle Scholar
  30. 30.
    Vesanto J (1999) SOM-based data visualization methods. Intell Data Anal 3(2):111–126CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • J. J. Fuertes
    • 1
  • M. Domínguez
    • 1
  • I. Díaz
    • 2
  • M. A. Prada
    • 1
  • A. Morán
    • 1
  • S. Alonso
    • 1
  1. 1.Instituto de Automática y FabricaciónUniversidad de León, Grupo de Investigación SUPPRESSLeónSpain
  2. 2.Área de Ingeniería de Sistemas y AutomáticaUniversidad de OviedoGijónSpain

Personalised recommendations