Neural Computing and Applications

, Volume 23, Issue 5, pp 1319–1327 | Cite as

Multiple classifier system for EEG signal classification with application to brain–computer interfaces

  • Amir Ahangi
  • Mehdi Karamnejad
  • Nima Mohammadi
  • Reza EbrahimpourEmail author
  • Nasoor Bagheri
Original Article


In this paper, we demonstrate the use of a multiple classifier system for classification of electroencephalogram (EEG) signals. The main purpose of this paper is to apply several approaches to classify motor imageries originating from the brain in a more robust manner. For this study, dataset II from BCI competition III was used. To extract features from the brain signal, discrete wavelet transform decomposition was used. Then, several classic classifiers were implemented to be utilized in the multiple classifier system, which outperforms the reported results of other proposed methods on the dataset. Also, a variety of classifier combination methods along with genetic algorithm feature selection were evaluated and compared in order to diminish classification error. Our results suggest that an ensemble system can be employed to boost EEG classification accuracy.


EEG classification Motor imagery Wavelet feature extraction Feature selection Multiple classifier system (MCS) 



The authors would like to thank the Graz University of Technology, Institute for Biomedical Engineering for providing the data. This work was supported by Shahid Rajaee Teacher Training University.


  1. 1.
    Lebedev MA, Nicolelis MAL (2006) Brain-machine interfaces:past, present and future. TRENDS Neurosci 29(9):536–546Google Scholar
  2. 2.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin. Neurophysiol 113(6):767–791CrossRefGoogle Scholar
  3. 3.
    Bell CJ, Shenoy P, Chalodhorn R, Rao RP (2008) Control of a humanoid robot by a noninvasive Brain-Computer Interface in humans. Neural Eng 5:214–220Google Scholar
  4. 4.
    Bayliss JD, Ballard DH (2000) A virtual reality testbed for Brain-Computer Interface research. Rehabil Eng 8(2):188–190Google Scholar
  5. 5.
    Galán F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, Millán Jdel RA (2008) Brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119:2159–2169Google Scholar
  6. 6.
    Hashimoto1 Y, Ushiba J, Kimura A, Liu M, Tomita Y (2010) change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy. BMC Neurosci 11(117). doi: 10.1186/1471-2202-11-117
  7. 7.
    Pfurtscheller G, Scherer R (2010) Brain-computer interfaces used for virtual reality control. In: ICABB-VeniceGoogle Scholar
  8. 8.
    Reuderink B, Poel M (2008) Robustness of the common spatial patterns algorithm in the BCI-pipeline. Technical report, HMI, University of Twente. Available at
  9. 9.
    Niedermeyer E, Da Silva F (2005) Electroencephalography: basic principles, clinical applications, and related fields. Doody’s all reviewed collection. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  10. 10.
    Millán JdR, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kübler A, Leeb R, Neuper C, Müller K-R, Mattia D (2010) Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Frontiers Neurosci 4(9):161Google Scholar
  11. 11.
    Keng Ang K, Guan C, Geok Chua S, Ti Ang B, Kuah C, Wang C, Soon Phua C, Yang Chin Z, Zhang H (2009) A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation. In: International conference of the IEEE engineering in medicine and biology society, Minneapolis, MNGoogle Scholar
  12. 12.
    Wang Y, Jao S (2005) Common spatial pattern method for channel selection in motor imagery based brain computer interface. IEEE 1(1):5392–5395Google Scholar
  13. 13.
    Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71Google Scholar
  14. 14.
    McFarland TMVDJ, Miner LA, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186Google Scholar
  15. 15.
    Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser H, Schlogl A, Obermaier B, Pregenzer M (2000) Current trends in graz brain-computer interface (BCI) research. Rehabil Eng 8:216–225Google Scholar
  16. 16.
    Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sen-sorimotor areas. Neurosci Lett 239:65–68CrossRefGoogle Scholar
  17. 17.
    Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroenc Clin Neurophys 103(5):1–10Google Scholar
  18. 18.
    Hoffmann U, Vesin J-M, Ebrahimi T, Diserens K (2008) An efficient p300-based brain-computer interface for disabled subjects. J Neurosci Methods 167:115–125CrossRefGoogle Scholar
  19. 19.
    Neupera C, Mullerb G, Kublerc A, Birbaumerc N, Pfurtschellera G (2003) Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114:399–409CrossRefGoogle Scholar
  20. 20.
    Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain-computer interface. Neural Syst Rehabil Eng 9(9):283–288Google Scholar
  21. 21.
    Zhang H, Guan C, Wang C (2008) Asynchronous p300-based brain-computer interfaces: a computational approach with statistical models. Biomed Eng 55(6):1754–1763Google Scholar
  22. 22.
    Adelia H, Zhoub Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. Neurosci Methods 123(2):69–87CrossRefGoogle Scholar
  23. 23.
    Cvetkovic D, Derya beyli E, Cosic I (2008) Wavelet transform feature extraction from human ppg, ECG, and EEG signal responses to elf pemf exposures: a pilot study. Elsevier Digit Signal Process 18:861–874CrossRefGoogle Scholar
  24. 24.
    Übeyli ED (2009) Combined neural network model employing wavelet coefficients for EEG signals classification. Elsevier Digit Signal Process 19:297–308CrossRefGoogle Scholar
  25. 25.
    Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Elsevier Expert Syst Appl 32:1084–1093CrossRefGoogle Scholar
  26. 26. (2003) Results webpage for BCI competition II
  27. 27.
    Mller-Gerking HRJ (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 1(1):441–446Google Scholar
  28. 28.
    Javadi M, Ebrahimpour R, Sajedin A, Faridi S, Zakernejad S (2011) Improving ECG classification accuracy using an ensemble of neural network modules. Plos One 6(10):e24386. doi: 10.1371/journal.pone.0024386
  29. 29.
    Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21–45CrossRefGoogle Scholar
  30. 30.
    Ghaderi R (2000) Arranging simple neural networks to solve complex classification problems. University of Surrey, GuildfordGoogle Scholar
  31. 31.
    Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  32. 32.
    Esmaeili M (2007) Classifiers fusion for EEG signals processing in human-computer interface systems. In: Proceedings of the 22nd national conference on Artificial intelligence, vol 2. AAAI Press, Menlo Park, CA, pp. 1856–1857Google Scholar
  33. 33.
    Ebrahimpour R, Esmkhani A, Faridi S (2010) Farsi handwritten digit recognition based on mixture of rbf experts. IEICE Electron Express 7(14):1014–1019CrossRefGoogle Scholar
  34. 34.
    Ebrahimpour R, Kabir E, Yousefi MR (2008) Teacher-directed learning in view-independent face recognition with mixture of experts using single-view eigenspaces. J Franklin Inst 345(2):87–101CrossRefzbMATHGoogle Scholar
  35. 35. (2003) Dataset III provided by Institute for Biomedical Engineering, Graz University of Technology
  36. 36.
    Friedman JH, Fayyad U (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min Knowl Disc 1:55–77CrossRefGoogle Scholar
  37. 37.
    Haykin S (1998) Neural networks. 2nd edn. Prentice Hall, Englewood Cliffs NJGoogle Scholar
  38. 38.
    Richard DGS, Duda O, Hart PE (2000) Pattern classification, 2nd edn. Wiley, New YorkGoogle Scholar
  39. 39.
    Zheng Z (1998) Naive bayesian classifier committees. In: Ndellec C, Rouveirol C (eds) Machine learning: ECML-98, vol. 1398 of lecture notes in computer science. Springer, Heidelberg, pp 196–207. doi: 10.1007/BFb0026690
  40. 40.
    Gunn S (1998) Support vector machines for classification and regression,” technical report, University of Southampton, Faculty of Engineering, Science and Mathematics School of Electronics and Computer ScienceGoogle Scholar
  41. 41.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2:121–167CrossRefGoogle Scholar
  42. 42.
    Jain RPWDJMAK (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Machine Intell 22(1):4–37CrossRefGoogle Scholar
  43. 43.
    Quinlan JR (1996) Bagging, boosting, and c4.5. AAAI/IAAI 1:725–730Google Scholar
  44. 44.
    Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Huang YS, Suen CY (1993) The behavior-knowledge space method for combination of multiple classifiers. Comput Vision Pattern Recogn 6:347–352Google Scholar
  46. 46.
    Kuncheva L, Bezdek J, Duin R (2001) Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recogn 34(2):299–314CrossRefzbMATHGoogle Scholar
  47. 47.
    Tsymbal PCA, Pechenizkiy M (2005) Sequential genetic search for ensemble feature selection. In: IJCAI05, 19th international joint conference on artificial intelligence, pp 877–882Google Scholar
  48. 48.
    Kuncheva L (1993) Genetic algorithm for feature selection for parallel classifiers. Inf Process Lett 46:163–168CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Amir Ahangi
    • 1
  • Mehdi Karamnejad
    • 1
  • Nima Mohammadi
    • 1
  • Reza Ebrahimpour
    • 1
    • 2
    Email author
  • Nasoor Bagheri
    • 1
  1. 1.Brain Intelligent and Systems Research Lab (BISLAB), Department of Electrical and Computer EngineeringShahid Rajaee Teacher Training University (SRTTU)TehranIran
  2. 2.School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations