Neural Computing and Applications

, Volume 22, Supplement 1, pp 463–476 | Cite as

Insider and outsider person authentication with minimum number of brain wave signals by neural and homogeneous identity filtering

  • Preecha Tangkraingkij
  • Chidchanok Lursinsap
  • Siripun Sanguansintukul
  • Tayard Desudchit
Original Article


This study discusses the uniqueness of brain wave signals (electroencephalography, EEG) in a singular individual to determine personal authentication. The brain is the most complex biological structure known to man and its wave signals are very difficult to mimic or steal, EEG signals can be measured from different locations, but too many signals can degrade recognition speed and accuracy. A practical technique combining independent component analysis for signal cleaning and a supervised neural network for authenticating signals was proposed. This new process called homogeneous identify filtering was introduced to identify persons in considered and outside groups. From 16 different EEG signal locations, four truly relevant locations of 1,000 data points (F 4C 4P 4O 2), 1,500 data points (F 8F 3C 3P 4), and 3,000 data points (F p1F 4P 4O 2) by SOBIRO algorithm were selected. This selection was used to identify 20 persons with high accuracy within the test group. The significant location for authentication is position P 4 which is the parietal lobe of the brain.


Electroencephalogram Biometric Authentication Independent component analysis Neural network 



This work was supported by the Center of Excellence in Mathematics, the Commission on Higher Education, Thailand and the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).


  1. 1.
    Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20CrossRefGoogle Scholar
  2. 2.
    Paranjape RB, Mahovsky J, Benedicenti L, Koles Z (2001) The electroencephalogram as a biometrics. Proc Can Conf Electr. Comput Eng 2:1363–1366Google Scholar
  3. 3.
    Poulos M, Rangoussi M, Alexandris N, Evangelou A (2001) On the use of EEG features towards person identification via neural networks. Med Inform Internet Med 26(1):35–48CrossRefGoogle Scholar
  4. 4.
    Poulos M, Rangoussi M, Alexandris N, Evangelou A (2002) Person identification from the EEG using nonlinear signal classification. Methods Inf Med 41(1):64–75Google Scholar
  5. 5.
    Palaniappan R, Ravi KVR (2003) A new method to identify individuals using signals from the brain. In: Proceedings of fourth international conference information communication and signal processing, pp 15–18Google Scholar
  6. 6.
    Palaniappan R, Mandic DP (2007) Biometrics from brain electrical activity: a machine learning approach. IEEE Trans Pattern Anal Mach Intell 29:738–742Google Scholar
  7. 7.
    Palaniappan R (2004) Method of identifying individuals using VEP signals and neural network. IEEE Proc Sci Meas Technol 151(1):16–20CrossRefGoogle Scholar
  8. 8.
    Palaniappan R, Mandic DP (2007) EEG based biometric framework for automatic identity verification. VLSI Signal Process 2(2):243–250CrossRefGoogle Scholar
  9. 9.
    Marcel S, Millan J (2007) Person authentication using brain-waves (EEG) and maximum a posteriori model adaptation. IEEE Trans Pattern Anal Mach Intell 29(4):743–752CrossRefGoogle Scholar
  10. 10.
    Cichocki A, Amari S, Siwek K, Tanaka T et al. ICALAB toolboxes. Available online at
  11. 11.
    Cruces S, Castedo L, Cichocki A (2002) Robust blind source separation algorithms using cumulants. Neurocomputing 49:87–117zbMATHCrossRefGoogle Scholar
  12. 12.
    Cruces S, Castedo L, Cichocki A (2000) Novel blind source separation algorithms using cumulants. IEEE Int Conf Acoust Speech Signal Process 5:3152–3155Google Scholar
  13. 13.
    Yeredor A (2000) Blind separation of Gaussian sources via second-order statistics with asymptotically optimal weighting. IEEE Signal Process Lett 7(7):197–200CrossRefGoogle Scholar
  14. 14.
    Doron E, Yeredor A (2004) Asymptotically optimal blind separation of parametric Gaussian sources—Lecture Notes in Computer Science (LNCS 3195): independent component analysis and blind source separation, 5th international conference on ICA, Granada, Spain, vol 3195, pp 390–397Google Scholar
  15. 15.
    Cardoso J-F, Souloumiac A (1993) Blind beam-forming for non Gaussian signals. In: IEEE Proceedings-F, vol 140, pp 362–370Google Scholar
  16. 16.
    Cardoso J-F, Souloumiac A (1996) Jacobi angles for simultaneous diagonalization. SIAM J Matrix Anal Appl 17(1):161–164Google Scholar
  17. 17.
    Cruces S, Cichocki A, Amari S (2001) Criteria for the simultaneous blind extraction of arbitrary groups of sources. In: 3rd international conference on independent component analysis and blind signal separation. San Diego, CA, USA, pp 740–745Google Scholar
  18. 18.
    Cruces S, Cichocki A, Amari S (2001) The minimum entropy and cumulant based contrast functions for blind source extraction in Lecture Notes in Computer Science, Springer, vol 2, pp 786–793Google Scholar
  19. 19.
    Cruces S, Cichocki A, Amari S (2002) On a new blind signal extraction algorithm: different criteria and stability analysis. IEEE Signal Process Lett 9:233–236CrossRefGoogle Scholar
  20. 20.
    Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second order statistics. IEEE Trans Signal Process 45(2):434–444CrossRefGoogle Scholar
  21. 21.
    Ziehe A, Mller K-R (1998) TDSEP—an efficient algorithm for blind separation using time structure. In: ICANN’98, pp 675–680Google Scholar
  22. 22.
    Cichocki A, Belouchrani A (2001) Sources separation of temporally correlated sources from noisy data using a bank of band-pass filters. In: Proceedings of third international conference on independent component analysis and signal separation (ICA-2001), pp 173–178Google Scholar
  23. 23.
    Gharieb RR, Cichocki A (2003) Second order statistics based blind signal separation using a bank of subband filters. J Digit Signal Process 13:252–274CrossRefGoogle Scholar
  24. 24.
    Belouchrani A, Cichocki A (2000) Robust whitening procedure in blind source separation context. Electron Lett 36(24):2050–2053CrossRefGoogle Scholar
  25. 25.
    Tangkraingkij P, Lursinsap C, Sanguansintukul S, Desudchit T (2009) Selecting relevant EEG signal locations for personal identification problem using ICA and neural network. In: Eighth IEEE/ACIS international conference on computer and information science (ICIS 2009), pp 616–621Google Scholar
  26. 26.
    Tangkraingkij P, Lursinsap C, Sanguansintukul S, Desudchit T (2010) Personal identification by EEG using ICA and neural network. In: Computational science and its applications (ICCSA 2010), Lecture Notes in Computer Science vol 6018, pp 419–430Google Scholar
  27. 27.
    Cichocki A (2004) Blind signal processing methods for analyzing multichannel brain signals. Int J Bioelectromagn 6(1):32–52Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Preecha Tangkraingkij
    • 1
  • Chidchanok Lursinsap
    • 1
  • Siripun Sanguansintukul
    • 1
  • Tayard Desudchit
    • 2
  1. 1.Department of Mathematics and Computer Science, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Chulalongkorn Comprehensive Epilepsy Program (CCEP), Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations