Neural Computing and Applications

, Volume 21, Supplement 1, pp 151–158 | Cite as

Soft int-group and its applications to group theory

Original Article


In this paper, we define a soft intersection group (soft int-group) on a soft set. This new concept functions as a bridge among soft set theory, set theory and group theory and shows the effect of soft sets on a group structure in the sense of intersection and inclusion of sets. We then derive the basic properties of soft int-groups and give its applications to group theory.


Soft sets Soft int-group Soft int-subgroup normal soft int-subgroup α-inclusion 



The authors are grateful for financial support from the Research Fund of Gaziosmanpaşa University under grand no: 2011-36.


  1. 1.
    Acar U, Koyuncu F, Tanay B (2010) Soft sets and soft rings. Comput Math Appl 59:3458–3463MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ali MI, Feng F, Liu X, Min WK, Shabir M (2009) On some new operations in soft set theory. Comput Math Appl 57:1547–1553MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aktaş H, Çağman N (2007) Soft sets and soft groups. Inform Sci 177:2726–2735MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Atagün AO, Sezgin A (2011) Soft substructures of rings, fields and modules. Comput Math Appl 61(3):592–601MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Aygünoglu A, Aygün H (2009) Introduction to fuzzy soft groups. Comput Math Appl 58:1279–1286MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Çağman N, Enginoğlu S (2010) Soft set theory and uni-int decision making. Eur J Oper Res 207:848–855MATHCrossRefGoogle Scholar
  7. 7.
    Çağman N, Enginoğlu S (2010) Soft matrix theory and its decision making. Comput Math Appl 59:3308–3314MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Çağman N, Çıtak F, Enginoğlu S (2010) Fuzzy parameterized fuzzy soft set theory and its applications. Turkish J Fuzzy Syst 1:21–35Google Scholar
  9. 9.
    Çağman N, Enginoğlu S, Çıtak F (2011) Fuzzy soft set theory and its applications, Iran. J Fuzzy Syst 8(3):137–147Google Scholar
  10. 10.
    Feng F, Liu XY, Leoreanu-Fotea V, Jun YB (2011) Soft sets and soft rough sets. Inform Sci 181(6):1125–1137MathSciNetMATHGoogle Scholar
  11. 11.
    Feng F, Li YM, Leoreanu-Fotea V (2010) Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Comput Math Appl 60:1756–1767MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Feng F, Li C, Davvaz B, Ali MI (2010) Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput 14(9):899–911MATHCrossRefGoogle Scholar
  13. 13.
    Feng F, Jun YB, Liu X, Li L (2010) An adjustable approach to fuzzy soft set based decision making. J Comput Appl Math 234:10–20MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Feng F, Jun YB, Zhao X (2008) Soft semirings. Comput Math Appl 56:2621–2628MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Jun YB (2008) Soft BCK/BCI-algebras. Comput Math Appl 56:1408–1413MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Jun YB, Park CH (2008) Applications of soft sets in ideal theory of BCK/BCI-algebras. Inform Sci 178:2466–2475MathSciNetMATHGoogle Scholar
  17. 17.
    Jun YB, Kim HS, Neggers J (2009) Pseudo d-algebras. Inform Sci 179:1751–1759MathSciNetMATHGoogle Scholar
  18. 18.
    Jun YB, Lee KJ, Zhan J (2009) Soft p-ideals of soft BCI-algebras. Comput Math Appl 58:2060–2068MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Jun YB, Lee KJ, Khan A (2010) Soft ordered semigroups. Math Logic Q 56(1):42–50MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jun YB, Lee KJ, Park CH (2010) Fuzzy soft set theory applied to BCK/BCI-algebras. Comput Math Appl 59:3180–3192MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kong Z, Gao L, Wang L, Li S (2008) The normal parameter reduction of soft sets and its algorithm. Comput Math Appl 56:3029–3037MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kovkov DV, Kolbanov VM, Molodtsov DA (2007) Soft sets theory-based optimization. J Comput Syst Sci Int 46(6):872–880MathSciNetCrossRefGoogle Scholar
  23. 23.
    Maji PK, Roy AR, Biswas R (2002) An application of soft sets in a decision making problem. Comput Math Appl 44:1077–1083MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Maji PK, Biswas R, Roy AR (2003) Soft set theory. Comput Math Appl 45:555–562MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Majumdar P, Samanta SK (2010) Generalised fuzzy soft sets. Comput Math Appl 59:1425–1432MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Molodtsov DA (1999) Soft set theory-first results. Comput Math Appl 37:19–31MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Molodtsov DA, Leonov VY, Kovkov DV (2006) Soft sets technique and its application. Nechetkie Sistemi i Myakie Vychisleniya 1(1):8–39Google Scholar
  28. 28.
    Mushrif MM, Sengupta S, Ray AK (2006) Texture classification using a novel, soft-set theory based classification, algorithm. Lect Notes Comput Sci 3851:246–254CrossRefGoogle Scholar
  29. 29.
    Park CH, Jun YB, Öztürk MA (2008) Soft WS-algebras. Commun Korean Math Soc 23(3):313–324MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Roy AR, Maji PK (2007) A fuzzy soft set theoretic approach to decision making problems. J Comput Appl Math 203:412–418MATHCrossRefGoogle Scholar
  31. 31.
    Sezgin A, Atagün AO (2011) On operations of soft sets. Comput Math Appl 61(5):1457–1467MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Sezgin A, Atagün AO, Aygün E (2011) A note on soft near-rings and idealistic soft near-rings. Filomat 25(1):53–68MathSciNetCrossRefGoogle Scholar
  33. 33.
    Xiao Z, Gong K, Zou Y (2009) A combined forecasting approach based on fuzzy soft sets. J Comput Appl Math 228:326–333MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Zhan J, Jun YB (2010) Soft BL-algebras based on fuzzy sets. Comput Math Appl 59:2037–2046MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Zou Y, Xiao Z (2008) Data analysis approaches of soft sets under incomplete information. Knowl-Based Syst 21:941–945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of MathematicsGaziosmanpaşa UniversityTokatTurkey
  2. 2.Department of MathematicsNevşehir UniversityNevşehirTurkey

Personalised recommendations