Neural Computing and Applications

, Volume 21, Supplement 1, pp 113–119 | Cite as

Some notes on soft topological spaces

  • Abdülkadir AygünoğluEmail author
  • Halis Aygün
Original Article


The first aim of this study is to define soft topological spaces and to define soft continuity of soft mappings. Second is to introduce soft product topology and study properties of soft projection mappings. Third is to define soft compactness and generalize Alexander subbase theorem and Tychonoff theorem to the soft topological spaces.


Soft set Soft mapping Soft topology Soft continuity Soft compactness Fuzzy set 


  1. 1.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 64(2):87–96CrossRefGoogle Scholar
  3. 3.
    Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11:341–356MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Molodtsov D (1999) Soft set theory-First results. Comput Math Appl 37(4/5):19–31MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Maji PK, Roy AR, Biswas R (2002) An application of soft set in decision making problem. Comput Math Appl 44:1077–1083MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Roy AR, Maji PK (2007) A fuzzy soft set theoretic approach to decision making problems. J Comput Appl Math 203:412–418zbMATHCrossRefGoogle Scholar
  7. 7.
    Aktaş H, Çağman N (2007) Soft sets and soft group. Inf Sci 177:2726–2735zbMATHCrossRefGoogle Scholar
  8. 8.
    Jun YB (2008) Soft BCK/BCI-algebras. Comput Math Appl 56((5):1408–1413MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Jun YB, Park CH (2008) Applications of soft sets in ideal theory of BCK/BCI-algebras. Inf Sci 178(11):2466–2475MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jun YB, Lee KJ, Park CH (2009) Soft set theory applied to ideals in d-algebras. Comput Math Appl 57(3):367–378MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jun YB, Lee KJ, Zhan J (2009) Soft p-ideals of soft BCI-algebras. Comput Math Appl 58(10):2060–2068MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Feng F, Jun YB, Zhao X (2008) Soft semirings. Comput Math Appl 56(10):2621–2628MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sun QM, Zhang ZL, Liu J (2008) Soft sets and soft modules. In: Wang G, Li T, Grzymala-Busse JW, Miao D, Skowron A, Yao Y (eds) Proceedings of the third international conference on rough sets and knowledge technology, RSKT 2008, Lecture Notes in Computer Science, vol 5009, Springer, pp 403–409Google Scholar
  14. 14.
    Aygünoğlu A, Aygün H (2009) Introduction to fuzzy soft groups. Comput Math Appl 58:1279–1286MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chang CL (1968) Fuzzy topological spaces. J Math Anal Appl 24:182–190MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lowen R (1976) Fuzzy topological spaces and fuzzy compactness. J Math Anal Appl 56:621–633MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Maji PK, Biswas R, Roy AR (2003) Soft set theory. Comput Math Appl 45:555–562MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Majumdar P, Samanta SK (2008) Similarity measure of soft set. New Math Nat Comput 4(1):1–12MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Çağman N, Enginoğlu S (2010) Soft set theory and uni-int decision making. Eur J Oper Res 207:848–855zbMATHCrossRefGoogle Scholar
  20. 20.
    Kharal A, Ahmad B, Mappings on Soft Classes, to appear in New Mathematics and Natural ComputationGoogle Scholar
  21. 21.
    Babitha KV, Sunil JJ (2010) Soft set relations and functions. Comput Math Appl 60:1840–1849MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Shabir M, Naz M (2011) On soft topological spaces. Comput Math Appl 61:1786–1799MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Adámek J, Herrlich H, Strecker GE (1990) Abstract and concrete categories. Wiley, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KocaeliKocaeliTurkey

Personalised recommendations