Neural Computing and Applications

, Volume 22, Issue 1, pp 103–110

Guaranteed cost synchronous control of time-varying delay cellular neural networks

Original Article

Abstract

This paper deals with the synchronization of time-varying delay cellular neural networks. Based on the Lyapunov stability analysis and the zoned discussion and maximax synthesis (ZDMS) method, the quadratic matrix inequality (QMI) criterion for the guaranteed cost synchronous controller is designed to synchronize the given chaotic systems. For the convenience to solve, using a generalized result of Schur complement, the criterion in the form of QMI is turned into the linear matrix inequality (LMI) form, which can be used efficiently via existing numerical convex optimization algorithms such as the interior-point algorithms for solving LMIs. The minimization of the guaranteed cost is further studied, and the corresponding LMI criterion for getting the controller is given. Finally, numerical examples are given to show the effectiveness of proposed guaranteed cost synchronous control and its corresponding minimization problem.

Keywords

Synchronous control Guaranteed cost control Saturation Time-varying delay Cellular neural network 

References

  1. 1.
    Li Z, Sun J, Oh S (2009) Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels. Automatica 45(7):1649–1658MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    O’Brien JF (2009) Multi-path nonlinear dynamic compensation for rudder roll stabilization. Control Eng Pract 17(12):1405–1414CrossRefGoogle Scholar
  3. 3.
    Brieger O, Kerr M, Leißling D, Postlethwaite I, Sofrony J, Turner MC (2009) Flight testing of a rate saturation compensation scheme on the ATTAS aircraft. Aerosp Sci Technol 13(2–3):92–104CrossRefGoogle Scholar
  4. 4.
    Indiveri G, Paulus J, Plöger PG (2007) Motion control of Swedish wheeled mobile robots in the presence of actuator saturation. Lect Notes Comput Sci 4434:35–46CrossRefGoogle Scholar
  5. 5.
    Pedra J, Candela I, Barrera A (2009) Saturation model for squirrel-cage induction motors. Electric Power Syst Res 79(7):1054–1061CrossRefGoogle Scholar
  6. 6.
    Loboda V, Lapusta Y, Sheveleva A (2010) Limited permeable crack in an interlayer between piezoelectric materials with different zones of electrical saturation and mechanical yielding. Int J Solids Struct 47(14–15):1795–1806MATHCrossRefGoogle Scholar
  7. 7.
    Faldin N, Morzhov A, Boiko I (2009) Analysis of periodic motions in relay feedback systems with saturation in plant dynamics. Int J Syst Sci 40(6):659–668MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ponce FJM, Gómez FMF (2010) Stability, bifurcations and response analysis of time delay control system with initial conditions and saturation effects. In: 18th Mediterranean conference on control & automation, MED2010, Marrakech, June 2010, pp 987–992Google Scholar
  9. 9.
    Corsellas AG (2008/2009) Virtual orbits and two-parameter bifurcation analysis in power electronic converters [D]. Enginyeria de Sistemes, Universitat Politècnica de catalunya/Automàtica i Informàtica IndustrialGoogle Scholar
  10. 10.
    Salarieh H (2007) Nonlinear feedback control of chaotic pendulum in presence of saturation effect. Chaos Solitons Fractals 31(2):292–304MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zeng ZG, Wang J (2007) Analysis and design of associative memories based on recurrent neural networks with linear saturation activation functions and time-varying delays. Neural Comput 19(8):2149–2182MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Zeng ZG, Jun W (2009) Associative memories based on continuous-time cellular neural networks designed using space-invariant cloning templates. Neural Netw 22(5–6):651–657CrossRefGoogle Scholar
  13. 13.
    Li N, Lu HX (2008) Single-electron tunneling depressing synapse for cellular neural networks. Neural Comput Appl 17(2):111–118CrossRefGoogle Scholar
  14. 14.
    Su TJ, Huang MY, Hou CL, Lin YJ (2010) Cellular neural networks for gray image noise cancellation based on a hybrid linear matrix inequality and particle swarm optimization approach. Neural Process Lett 32(2):147–165CrossRefGoogle Scholar
  15. 15.
    Leine RI, van Campen DH (2006) Bifurcation phenomena in non-smooth dynamical systems. Eur J Mech A/Solids 25(4):595–616MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Leine RI (2006) Bifurcations of equilibria in non-smooth continuous systems. Physica D: Onlinear Phenomena 223(1):121–137MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Leine RI, van de Wouw N (2008) Stability and convergence of mechanical systems with unilateral constraints. Springer, BerlinMATHCrossRefGoogle Scholar
  18. 18.
    Hu T, Teel AR (2006) Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans Automat Contr 51(11):1770–1786MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dai D, Hu T, Teel AR (2007) Analysis of systems with saturation/deadzone via piecewise–quadratic Lyapunov functions. In: American control conference, ACC2007, New York, pp 5822–5827Google Scholar
  20. 20.
    Zhang LX, Boukas EK, Haidar A (2008) Delay-range-dependent control synthesis for time-delay systems with actuator saturation. Automatica 44(10):2691–2695MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Shi T, Su HY, Chu J (2010) On stability and stabilization for uncertain stochastic systems with time-delay and actuator saturation. Int J Syst Sci 41(5):501–509MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kao YG, Gao CC (2008) Global exponential stability analysis for cellular neural networks with variable coefficients and delays. Neural Comput Appl 17(3):291–295MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yakoubi K, Chitour Y (2007) Linear systems subject to input saturation and time delay: global asymptotic stabilization. IEEE Trans Automat Contr 52(5):874–879MathSciNetCrossRefGoogle Scholar
  24. 24.
    Xin H, Gan D, Qiu J (2008) Stability analysis of linear dynamical systems with saturation nonlinearities and a short time delay. Phys Lett A 372(22):3999–4009MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Fang HJ, Lin ZL, Shamash Y (2006) Disturbance tolerance and rejection of linear systems with imprecise knowledge of actuator input output characteristics. Automatica 42(9):1523–1530MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kebriaei H, Yazdanpanah MJ (2010) Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity. Commun Nonlinear Sci Numer Simul 15(2):430–441MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Wang K, Teng ZD, Jiang HJ (2010) Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions. Math Comput Model 52(1–2):12–24MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  29. 29.
    Fliegner T, Logemann H, Ryan EP (2003) Low-gain integral control of continuous-time linear systems subject to input and output nonlinearities. Automatica 39(3):455–462MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Fan Y, Jiang ZP, Zhang H (2006) Network flow control under capacity constraints: a case study. Syst Control Lett 55(8):681–688MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hu TS, Lin ZL, Chen BM (2002) An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38(2):351–359MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.College of Science, Naval University of EngineeringWuhanChina

Personalised recommendations