Advertisement

Neural Computing and Applications

, Volume 20, Issue 3, pp 345–354 | Cite as

Neuro-evolutionary mobile robot egomotion estimation with a 3D ToF camera

  • Ivan VillaverdeEmail author
  • Manuel Graña
Original Article

Abstract

An innovative neuro-evolutionary approach for mobile robot egomotion estimation with a 3D ToF camera is proposed. The system is composed of two main modules following a preprocessing step. The first module is a Neural Gas network that computes a Vector Quantization of the preprocessed camera 3D point cloud. The second module is an Evolution Strategy that estimates the robot motion parameters by performing a registration process, searching on the space of linear transformations, restricted to the translation and rotation, between the codebooks obtained for successive camera readings. The fitness function is the matching error between the predicted and the observed codebook corresponding to the next camera readings. In this paper, we report results of an implementation of this system tested on data from a real mobile robot, and provide several comparisons between our and other well-known registration algorithms.

Keywords

Neural gas Evolution strategy Egomotion Robotics 

References

  1. 1.
    Bentley JL (1975) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Besl PJ, McKay HD (1992) A method for registration of 3-D shapes. Pattern Anal Mach Intell IEEE Trans 14(2):239–256CrossRefGoogle Scholar
  3. 3.
    Beyer H-G, Schwefel H-P (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chow CK, Tsui HT, Lee T (2004) Surface registration using a dynamic genetic algorithm. Pattern Recogn 37(1):105–117CrossRefzbMATHGoogle Scholar
  5. 5.
    Dissanayake G (2001) A solution to the simultaneous localization and map building (SLAM) problem. Robot Autom IEEE Trans 17(3):229–241CrossRefGoogle Scholar
  6. 6.
    Guðmundsson SA, Larsen R, Ersbøll BK (2007) Robust pose estimation using the SwissRanger SR-3000 camera. In: Image analysis, volume 4522/2007 of lecture notes in computer science. Springer, pp 968–975Google Scholar
  7. 7.
    Kohonen T (2001) Self-organizing maps. Springer, BerlinzbMATHGoogle Scholar
  8. 8.
    Lange R, Seitz P (2001) Solid-state time-of-flight range camera. IEEE J Quantum Electron 37(3):390–397CrossRefGoogle Scholar
  9. 9.
    Martinetz TM, Berkovich SG, Schulten KJ (1993) ‘Neural-Gas’ network for vector quantization and its application to time-series prediction. Neural Netw IEEE Trans 4(4):558–569CrossRefGoogle Scholar
  10. 10.
    Martinetz TM, Schulten KJ (1991) In: Proc international conference on artificial neural networks, chapter a neural-gas network learns topologies. North-Holland, Amsterdam, pp 397–402Google Scholar
  11. 11.
    Oggier T, Lehmann M, Kaufmannn R, Schweizer M, Richter M, Metzler P, Lang G, Lustenberger F, Blanc N (2003) An all-solid-state optical range camera for 3D-real-time imaging with sub-centimeter depth-resolution (SwissRanger). In: Proc SPIE, vol 5249. pp 634–545Google Scholar
  12. 12.
    Randy LH, Sue EH (2004) Practical genetic algorithms, 2nd edn. Wiley, Hoboken zbMATHGoogle Scholar
  13. 13.
    Salvi J, Matabosch C, Fofi D, Forest J (2007) A review of recent range image registration methods with accuracy evaluation. Image Vis Comput 25(5):578–596CrossRefGoogle Scholar
  14. 14.
    Thrun S (2002) Exploring artificial intelligence in the new millenium, chapter robotic mapping: a survey. Morgan Kaufmann, San MateoGoogle Scholar
  15. 15.
    Vesanto J, Alhoniemi E, Himberg J, Kiviluoto K, Parviainen J (1999) Self-organizing map for data mining in matlab: the SOM toolbox. Simulation News Eur 25(54):54. http://www.cis.hut.fi/projects/somtoolbox/
  16. 16.
    Villaverde I, Echegoyen Z, Graña M (2009) Neuro-evolutive system for ego-motion estimation with a 3D camera. In: Köppen M (ed) Advances in neuro-information processing, vol 5506/2009 of lecture notes in computer sciences. Springer, pp 1021–1028Google Scholar
  17. 17.
    Villaverde I, Graña M (2008) A hybrid intelligent system for robot ego-motion estimation with a 3D camera. In: Corchado E, Abraham A, Pedrycz W (eds) Hybrid artificial intelligence systems, vol 5271 of lecture notes in artificial intelligence. Springer, pp 657–664Google Scholar
  18. 18.
    Ye C, Hegde G-PM (2009) Robust edge extraction for SwissRanger SR-3000 range images. In: Robotics and automation, 2009. ICRA ’09. IEEE international conference on, May, pp 2437–2442Google Scholar
  19. 19.
    Zinsser T, Schnidt H, Niermann J (2003) A refined ICP algorithm for robust 3-D correspondences estimation. In: International conference on image processing pp 695–698Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Computational Intelligence GroupUniversity of the Basque CountrySan SebastianSpain

Personalised recommendations