Neural Computing and Applications

, Volume 20, Issue 3, pp 319–328

On \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy ideals of BCI-algebras

Original Article

Abstract

The concepts of \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy (p-, q- and a-) ideals of BCI-algebras are introduced and some related properties are investigated. In particular, we describe the relationships among ordinary fuzzy (p-, q- and a-) ideals, (∈, ∈ ∨ q)-fuzzy (p-, q- and a-) ideals and \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy (p-,q- and a-) ideals of BCI-algebras. Moreover, we prove that a fuzzy set μ of a BCI-algebra X is an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy a-ideal of X if and only if it is both an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy p-ideal and an \((\overline{\in},\overline{\in} \vee \overline{q})\)-fuzzy q-ideal. Finally, we give some characterizations of three particular cases of BCI-algebras by these generalized fuzzy ideals.

Keywords

(p-Semisimple; quasi-associative; associative) BCI-algebra (∈, ∈ ∨ q)-fuzzy (p-; q- and a-) ideal (p-; q- and a-) ideal \((\overline{\in};\overline{\in} \vee \overline{q})\)-fuzzy (p-; q- and a-) ideal 

References

  1. 1.
    Bhakat SK, Das P (1996) (∈, ∈ ∨ q)-fuzzy subgroups. Fuzzy Sets Syst 80:359–368CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Davvaz B (2006) (∈,  ∈ ∨ q)-fuzzy subnear-rings and ideals. Soft Comput 10:206–211CrossRefMATHGoogle Scholar
  3. 3.
    Dudek WA (1998) On group-like BCI-algebras. Demonstratio Math 21:369–376MathSciNetGoogle Scholar
  4. 4.
    Dudek WA, Thomys J (1990) On decompositions of BCH-algebras. Math Japon 35:1131–1138MATHMathSciNetGoogle Scholar
  5. 5.
    Esteva F, Godo L (2001) Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst 124:271–288CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hájek P (1998) Metamathematics of fuzzy logic. Kluwer, DordrechtMATHGoogle Scholar
  7. 7.
    Imai Y, Iséki K (1966) On axiom system of propositional calculus. Proc Japan Acad 42:19–22CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Iséki K (1980) On BCI-algebras. Math Seminar Notes(now Kobe Math J) 8:125–130MATHGoogle Scholar
  9. 9.
    Jun YB (2004) On (α, β)-fuzzy ideals of BCK/BCI-algebras. Sci Math Japon 60:613–617MATHGoogle Scholar
  10. 10.
    Jun YB, Meng J (1994) Fuzzy p-ideals in BCI-algebras. Math Japon 40:271–282MATHMathSciNetGoogle Scholar
  11. 11.
    Liu YL, Meng J (2000) Fuzzy q-ideals in BCI-algebras. J Fuzzy Math 8:873–881MATHMathSciNetGoogle Scholar
  12. 12.
    Liu YL, Meng J (2001) Fuzzy ideals in BCI-algebras. Fuzzy Sets Syst 123:227–237CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Liu YL, Meng J, Zhang XH and Yue ZC (2000) q-ideals and a-ideals in BCI-algebras. SEA Bull Math 24:243–253CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Liu YL, Zhang XH (2002) Fuzzy a-ideals in BCI-algebras. Adv Math (China) 31:65–73MathSciNetGoogle Scholar
  15. 15.
    Ma X, Zhan J, Davvaz B, Jun YB (2008) Some kinds of (∈, ∈ ∨ q)-interval-valued fuzzy ideals of BCI-algebras. Inform Sci 178:3738–3754CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Meng J, Guo X (2005) On fuzzy ideals in BCK-algebras. Fuzzy Sets Syst 149:509–525CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Pu PM, Liu YM (1980) Fuzzy topology I: Neighbourhood structure of a fuzzy point and Moore-Smith convergence. J Math Anal Appl 76:571–599CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Xu Y (1993) Lattice implication algebras. J Southeast Jiaotong Univ 1:20–27Google Scholar
  19. 19.
    Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Zhan J, Jun YB, Davvaz B (2009) On (∈, ∈ ∨ q)-fuzzy ideals of BCI-algebras. Iran J Fuzzy Syst 6(1):81–94MATHMathSciNetGoogle Scholar
  21. 21.
    Zhan J, Tan Z (2004) Intuitionistic fuzzy a-ideals in BCI-algebras. Soochow Math J 30:207–216MATHMathSciNetGoogle Scholar
  22. 22.
    Zhang XH, Jiang H, Bhatti SA (1994) On p-ideals of BCI-algebras. Punjab Univ J Math 27:121–128MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Department of MathematicsHubei Institute for NationalitiesEnshiPeople’s Republic of China
  2. 2.Department of Mathematics EducationGyeongsang National UniversityChinjuKorea

Personalised recommendations