Neural Computing and Applications

, Volume 19, Issue 7, pp 1081–1087 | Cite as

A Chilean seismic regionalization through a Kohonen neural network

Original Article

Abstract

Through this paper we are presenting a study of seismic regionalization for continental Chile based on a neural network. A scenario with six seismic regions is obtained, irrespective of the size of the neighborhood or the range of the correlation between the cells of the grid. Unlike conventional seismic methods, our work manages to generate seismic regions tectonically valid from sparse and non-redundant information, which shows that the self-organizing maps are a valuable tool in seismology. The high correlation between the spatial distribution of the seismic zones and geological data confirms that the fields chosen for structuring the training vectors were the most appropriate.

Keywords

Seismic regionalization Earthquake hazard Seismic risk Neural network Kohonen self-organizing map 

References

  1. 1.
    Gorshkov GP (1956) General survey of seismicity of the territory of the USSR. Public Bureau Central Seismologique International A19:25Google Scholar
  2. 2.
    Richter CF (1959) Seismic regionalization. BSSA 49:123Google Scholar
  3. 3.
    Gajardo E, Lomnitz C (1958) Seismic province of Chile. Publication 11:1529Google Scholar
  4. 4.
    Welkner P (1964) Estudio de la Sismicidad en Chile y su aplicacion al calculo antisismico. Thesis, Geophysics Department, University of ChileGoogle Scholar
  5. 5.
    Labbe JC (1976) Relaciones macrosismicas para la evaluacion del riesgo sismico en Chile y CaliforniaGoogle Scholar
  6. 6.
    Barrientos SE (1980) Regionalizacion Sismica de Chile. M.Sc. Thesis, School of Engineering, University of ChileGoogle Scholar
  7. 7.
    Cornell C (1968) Engineering seismic risk analysis. Seism Soc Am Bull 58:1583–1606Google Scholar
  8. 8.
    Algermissen ST, Perkins DM (1976) A probabilistic estimate of maximum acceleration in rock in the contiguos United States. Geolog Surv Op.-File Rep 76–416Google Scholar
  9. 9.
    Martin A (1990) Hacia una regionalizacion y calculo del peligro sismico de Chile. Engineering Thesis, School of Engineering, University of ChileGoogle Scholar
  10. 10.
    Kahraman S, Baran T et al (2008) The effect of regional borders when using the Gutenberg-Richter model, case study: Western Anatolia. Pure Appl Geophys 165:2CrossRefGoogle Scholar
  11. 11.
    Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464CrossRefGoogle Scholar
  12. 12.
    Rojas R (1996) Neural networks—a systematic introduction. Springer, BerlinMATHGoogle Scholar
  13. 13.
    Delacou B, Sue C et al (2008) Quantification of strain rate in the Western Alps using geodesy: comparisons with seismotectonics. Swiss J Geosci 101:2CrossRefGoogle Scholar
  14. 14.
    Pedone R, Lombardo P et al (1992) Seismotectonic regionalization of the Red Sea area and its application to seismic risk analysis. Nat Hazards 5:233CrossRefGoogle Scholar
  15. 15.
    Dowla FU, Taylor SR, Anderson RW (1990) Seismic discrimination with artificial neural netwoks: preliminary results with regional spectral data. BSSA 80:1346Google Scholar
  16. 16.
    Wang J, Teng T-L (1995) Artificial neural network-based seismic detector. BSSA 85:308Google Scholar
  17. 17.
    Kim W-Y, Aharonian V, Lerner-Lam AL, Richards PG (1997) Discrimination of earthquakes and explosions in southern Russia using regional high-frequency three-component data from IRIS/JSP caucasus network. BSSA 87:569Google Scholar
  18. 18.
    Giacinto G, Paolucci R, Roli F (1997) Application of neural networks and statistical pattern recognition algorithms to earthquake risk evaluation. Pattern Recogn Lett 18:1353Google Scholar
  19. 19.
    Kerh T, Gunaratnam D, Chan Y (2009) Neural computing with genetic algorithm in evaluating potentially hazardous metropolitan areas result from earthquake. Neural Comput Appl. doi:10.1007/s00521-009-0301-z
  20. 20.
    Kerh T, Lai JS, Chan Y (2007) Application of neural network in evaluating seismic design parameters for metropolitan areas in Taiwan. In: Proceedings of the international conference on advanced information technologies 052:01–06Google Scholar
  21. 21.
    Pu Y, Mesbahi E (2006) Application of artificial neural networks to evaluation of ultimate strength of steel panels. Eng Struct 28:1190CrossRefGoogle Scholar
  22. 22.
    Kerh T, Lai JS, Gunaratnam D, Saunders R (2008) Evaluation of seismic design values in the Taiwan building code by using artificial neural network. CMES-Comput Model Eng Sci 26(1):1Google Scholar
  23. 23.
    CERESIS Catalog (1985) Catalogo de terremotos para America del SurGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    Yin H (2007) Learning nonlinear principal manifolds by self-organising maps. In: Gorban AN et al (eds) LNCSE 58. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.TGTLos AndesChile
  2. 2.Departamento de Física y AstronomíaUniversidad de ValparaísoValparaísoChile

Personalised recommendations