Neural Computing and Applications

, Volume 21, Issue 2, pp 207–218 | Cite as

Analysis of emergent symmetry breaking in collective decision making

  • Heiko Hamann
  • Thomas Schmickl
  • Heinz Wörn
  • Karl Crailsheim
Swam Intelligence

Abstract

We investigate a simulated multi-agent system (MAS) that collectively decides to aggregate at an area of high utility. The agents’ control algorithm is based on random agent–agent encounters and is inspired by the aggregation behavior of honeybees. In this article, we define symmetry breaking, several symmetry breaking measures, and report the phenomenon of emergent symmetry breaking within our observed system. The ability of the MAS to successfully break the symmetry depends significantly on a local-neighborhood-based threshold of the agents’ control algorithm that determines at which number of neighbors the agents stop. This dependency is analyzed and two macroscopic features are determined that significantly influence the symmetry breaking behavior. In addition, we investigate the connection between the ability of the MAS to break symmetries and the ability to stay flexible in a dynamic environment.

Keywords

Symmetry breaking Collective decision making Swarm intelligence Multi-agent system 

References

  1. 1.
    Yang CN (1952) The spontaneous magnetization of a two-dimensional Ising model. Phys Rev 85(5):808–816MATHCrossRefGoogle Scholar
  2. 2.
    Anderson PW (1972) More is different. Science 177(4047):393–396CrossRefGoogle Scholar
  3. 3.
    Collier J (1996) Information originates in symmetry breaking. Symmetry Sci Cult 7:247–256MATHGoogle Scholar
  4. 4.
    Tabony J, Job D (1992) Gravitational symmetry breaking in microtubular dissipative structures. PNAS 89(15):6948–6952CrossRefGoogle Scholar
  5. 5.
    Helbing D, Molnár P, Farkas IJ, Bolay K (2001) Self-organizing pedestrian movement. Environ Plann B Plann Des 28(3):361–383CrossRefGoogle Scholar
  6. 6.
    Deneubourg JL, Gregoire JC, Fort EL (1990) Kinetics of larval gregarious behavior in the bark beetle Dendroctonus micans (coleoptera: Scolytidae). J Insect Behav 3(2):169–182CrossRefGoogle Scholar
  7. 7.
    Deneubourg JL, Lioni A, Detrain C (2002) Dynamics of aggregation and emergence of cooperation. Biological Bulletin 202 (June 2002), pp 262–267Google Scholar
  8. 8.
    Theraulaz G, Bonabeau E, Nicolis SC, Solé RV, Fourcassié V, Blanco S, Fournier R, Joly JL, Fernández P, Grimal A, Dalle P, Deneubourg JL (2002) Spatial patterns in ant colonies. Proc Natl Acad Sci U S A 99(15):9645–9649Google Scholar
  9. 9.
    Ame JM, Rivault C, Deneubourg JL (2004) Cockroach aggregation based on strain odour recognition. Animal Behav 68:793–801CrossRefGoogle Scholar
  10. 10.
    Leoncini I, Rivault C (2005) Could species segregation be a consequence of aggregation processes? example of Periplaneta americana (l.) and P. fuliginosa (serville). Ethology 111(5):527–540CrossRefGoogle Scholar
  11. 11.
    Jeanson R, Rivault C, Deneubourg JL, Blanco S, Fournier R, Jost C, Theraulaz G (2005) Self-organized aggregation in cockroaches. Animal Behav 69:169–180CrossRefGoogle Scholar
  12. 12.
    Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tâche F, Saïd I, Durier V, Canonge S, Amé JM, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg JL (2007) Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853):1155–1158CrossRefGoogle Scholar
  13. 13.
    Sumpter DJT, Broomhead DS (2004) Shape and dynamics of thermoregulating honey bee clusters. J Theor Biol 204:1–14CrossRefGoogle Scholar
  14. 14.
    Schmickl T, Hamann H (2010) BEECLUST: a swarm algorithm derived from honeybees. In: Xiao Y, Hu F (eds) Bio-inspired computing and communication networks. RoutledgeGoogle Scholar
  15. 15.
    Tyutyunov Y, Senina I, Arditi R (2004) Clustering due to acceleration in the response to population gradient: a simple self-organization model. Am Nat 164(6)Google Scholar
  16. 16.
    Kernbach S, Thenius R, Kornienko O, Schmickl T (2009) Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic swarm. Adapt Behav 17:237–259CrossRefGoogle Scholar
  17. 17.
    Seeley TD, Visscher PK (1991) Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making. Behav Ecol Sociobiol 54:511–520CrossRefGoogle Scholar
  18. 18.
    Franks NR, Mallon EB, Bray HE, Hamilton MJ, Mischler TC (2003) Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav 65:215–223CrossRefGoogle Scholar
  19. 19.
    Franks NR, Pratt SC, Mallon EB, Britton NF, Sumpter DJT (2002) Information flow, opinion polling and collective intelligence in house-hunting social insects. Philos Trans R Soc Lond B Biol Sci 357:1567–1583CrossRefGoogle Scholar
  20. 20.
    Jeanson R, Deneubourg JL, Grimal A, Theraulaz G (2004) Modulation of individual behavior and collective decision-making during aggregation site selection by the ant messor barbarus. Behav Ecol Sociobiol 55:388–394CrossRefGoogle Scholar
  21. 21.
    Portha S, Deneubourg JL, Detrain C (2002) Self-organized asymmetries in ant foraging: a functional response to food type and colony needs. Behav Ecol 13(6):776–781CrossRefGoogle Scholar
  22. 22.
    Dussutour A, Fourcassié V, Helbing D, Deneubourg JL (2006) Optimal traffic organization in ants under crowded condition. Nature 428:70–73CrossRefGoogle Scholar
  23. 23.
    Nicolis SC, Deneubourg JL (1999) Emerging patterns and food recruitment in ants: an analytical study. J Theor Biol 198(4):575–592CrossRefGoogle Scholar
  24. 24.
    Saffre F, Furey R, Krafft B, Deneubourg JL (1999) Collective decision-making in social spiders: Dragline-mediated amplification process acts as a recruitment mechanism. J Theor Biol 198:507–517CrossRefGoogle Scholar
  25. 25.
    de Vries H, Biesmeijer JC (2002) Self-organization in collective honeybee foraging: emergence of symmetry breaking, cross inhibition and equal harvest-rate distribution. Behav Ecol Sociobiol 51(6):557–569CrossRefGoogle Scholar
  26. 26.
    Meyer B, Beekman M, Dussutour A (2008) Noise-induced adaptive decision-making in ant-foraging. In: Simulation of adaptive behavior (SAB), Number 5040 in LNCS, Springer, pp 415–425Google Scholar
  27. 27.
    Nicolis SC, Dussutour A (2008) Self-organization, collective decision making and source exploitation strategies in social insects. Eur Phys J B 65:379–385CrossRefGoogle Scholar
  28. 28.
    Sharkey AJC (2007) Swarm robotics and minimalism. Connect Sci 19(3):245–260CrossRefGoogle Scholar
  29. 29.
    Schmickl T, Crailsheim K (2008) Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton Robots 25(1–2):171–188CrossRefGoogle Scholar
  30. 30.
    Hamann H, Wörn H, Crailsheim K, Schmickl T (2008) Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: IEEE/RSJ 2008 international conference on intelligent robots and systems (IROS’08), Los Alamitos, CA, IEEE Press (2008), pp 1415–1420Google Scholar
  31. 31.
    Garnier S, Gautrais J, Asadpour M, Jost C, Theraulaz G (2009) Self-organized aggregation triggers collective decision making in a group of cockroach-like robots. Adapt Behav 17(2):109–133CrossRefGoogle Scholar
  32. 32.
    Garnier S, Jost C, Jeanson R, Gautrais J, Asadpour M, Caprari G, Theraulaz G (2005) Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrere M (ed) Advances in artificial life: 8th European conference, ECAL 2005, vol 3630 of LNAI, Springer, pp 169–178Google Scholar
  33. 33.
    Camazine S, Deneuenbourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems (Princeton Studies in Complexity). University Presses of CAGoogle Scholar
  34. 34.
    Schmickl T, Hamann H, Wörn H, Crailsheim K (2009) Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Rob Auton Syst 57(9):913–921CrossRefGoogle Scholar
  35. 35.
    Bodi M, Thenius R, Schmickl T, Crailsheim K (2009) Robustness of two interacting robot swarms using the BEECLUST algorithm. In: MATHMOD 2009—6th Vienna international conference on mathematical modellingGoogle Scholar
  36. 36.
    Schmickl T, Thenius R, Möslinger C, Radspieler G, Kernbach S, Crailsheim K (2008) Get in touch: Cooperative decision making based on robot-to-robot collisions. Auton Agent Multi Agent Syst 18(1):133–155CrossRefGoogle Scholar
  37. 37.
    Garnier S, Jost C, Gautrais J, Asadpour M, Caprari G, Jeanson R, Grimal A, Theraulaz G (2008) The embodiment of cockroach aggregation behavior in a group of micro-robots. Artif Life 14(4):387–408, PMID: 18573067CrossRefGoogle Scholar
  38. 38.
    Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision making. Proc R Soc Lond B 270:2457–2463CrossRefGoogle Scholar
  39. 39.
    Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28(4):277–290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Heiko Hamann
    • 1
  • Thomas Schmickl
    • 1
  • Heinz Wörn
    • 2
  • Karl Crailsheim
    • 1
  1. 1.Artificial Life Lab of the Department of ZoologyKarl-Franzens University GrazGrazAustria
  2. 2.Universität Karslruhe (TH), Institute for Process Control and RoboticsKarlsruheGermany

Personalised recommendations