Neural Computing and Applications

, Volume 19, Issue 8, pp 1227–1235 | Cite as

Pose invariant face recognition based on hybrid-global linear regression

  • Abhishek Sharma
  • Anamika Dubey
  • A. N. Jagannatha
  • R. S. Anand
Original Article

Abstract

The paper presents a simple but efficient novel H-eigenface (Hybrid-eigenface) method for pose invariant face recognition ranging from frontal to profile view. H-eigenfaces are entirely new basis for face image representation under different poses and are used for virtual frontal view synthesis. The proposed method is based on the fact that face samples of same person under different poses are similar in terms of the combination pattern of facial features. H-eigenfaces exploit this fact and thus two H-eigenfaces under different poses capture same features of the face. Thereby providing a compact view-based subspace, which can be further used to generate virtual frontal view from inputted non-frontal face image using least square projection technique. The use of proposed methodology on FERET and ORL face database shows an impressive improvement in recognition accuracy and a distinct reduction in online computation when compared to global linear regression method.

Keywords

Global linear regression Least square projection Hybrid-eigenface 

References

  1. 1.
    Zhao W, Chellappa R, Rosenfeld A, Philips PJ (2003) Face recognition: a literature survey. ACM Comput Surv 35:399–458. doi: 10.1145/954339.954342 CrossRefGoogle Scholar
  2. 2.
    Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosc 3:71–96. doi: 10.1162/jocn.1991.3.1.71 CrossRefGoogle Scholar
  3. 3.
    Moghaddam B, Jebara T, Pentland A (2000) Bayesian face recognition. Pattern Recognit 33:1771–1782. doi: 10.1016/S0031-3203(99)00179-X CrossRefGoogle Scholar
  4. 4.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Intell 19:711–720. doi: 10.1109/34.598228 CrossRefGoogle Scholar
  5. 5.
    Gross R, Matthews I, Baker S (2002) Eigen light-fields and face recognition across pose. In: Proceedings of the 5th international conference on automatic face and gesture recognition, Washington, DC, pp 3–9. doi: 10.1109/AFGR.2002.1004122
  6. 6.
    Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH, New York, pp 187–194. doi: 10.1145/311535.311556
  7. 7.
    Blanz V, Vetter T (2003) Face recognition based on fitting a 3-D morphable model. IEEE Trans Pattern Anal Mach Intell 25:1063–1074. doi: 10.1109/TPAMI.2003.1227983 CrossRefGoogle Scholar
  8. 8.
    Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23:643–660. doi: 10.1109/34.927464 CrossRefGoogle Scholar
  9. 9.
    Zhao W, Chellappa (2000) SFS based view synthesis for robust face recognition. In Proceedings of the 4th international conference on automatic face and gesture recognition, Grenoble, France, pp 285–292. doi: 10.1109/AFGR.2000.840648
  10. 10.
    Feng G, Yuen PC (2000) Recognition of head-&-shoulder face image using virtual frontal-view image. IEEE Trans Syst Man Cybern 30:871–883CrossRefGoogle Scholar
  11. 11.
    Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23:681–685. doi: 10.1109/34.927467 CrossRefGoogle Scholar
  12. 12.
    Cootes T, Walker K, Taylor CJ (2000) View-based active appearance models. In: Proceedings of the 4th international conference on automatic face and gesture recognition, Washington, DC, pp 227–238Google Scholar
  13. 13.
    Beymer D (1993) Face recognition under varying pose. Tech. Rep. A. I. Memo, vol 1461. Artif. Intell. Lab., Mass. Inst. Technol, CambridgeGoogle Scholar
  14. 14.
    Beymer D, Poggio T (1995) Face recognition from one example view. In: Proceedings of the 5th international conference on computer vision, pp 500–507Google Scholar
  15. 15.
    Vetter T, Poggio T (1997) Linear object classes and image synthesis from a single example image. IEEE Trans Pattern Anal Mach Intell 19:733–742. doi: 10.1109/34.598230 CrossRefGoogle Scholar
  16. 16.
    Chai X, Shan S, Chen X, Gao W (2006) Local linear regression (LLR) for pose invariant face recognition. In: Proceedings of the 7th international conference on automatic face and gesture recognition, Southampton, UK, Apr., pp 631–636. doi: 10.1109/FGR.2006.73
  17. 17.
    Pentland A, Moghaddam B, Starner T (1994) View-based and modular eigenspace for face recognition. In Proceedings of the IEEE conference on computer vision pattern recognition, Seattle, WA, pp 84–91. doi: 10.1.1.47.3791
  18. 18.
    Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3):81–84. doi: 10.1109.97.995823 CrossRefGoogle Scholar
  19. 19.
    Phillipse P, Moon H, Rizvi S, Rauss P (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1103. doi: 10.1.1.44.9852 CrossRefGoogle Scholar
  20. 20.
    ORL face database, AT & T Laboratories, Cambridge, U. K. [Online] Available: http://www.cam-orl.co.uk/facedatabase.html, 2004
  21. 21.
    Zhao W, Chellappa R, Krishnaswamy A (1998) Discriminant analysis of principal components for face recognition. In: Proceedings of the third international conference on auto face gesture recognition, pp 336–341Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Abhishek Sharma
    • 1
  • Anamika Dubey
    • 1
  • A. N. Jagannatha
    • 1
  • R. S. Anand
    • 1
  1. 1.Department of Electrical EngineeringIITRoorkeeIndia

Personalised recommendations