Neural Computing and Applications

, Volume 19, Issue 3, pp 471–475 | Cite as

Advanced machine learning techniques for microarray spot quality classification

Original Article

Abstract

It is well known that microarray printing, hybridization, and washing oftentimes create erroneous measurements, and these errors detrimentally impact machine microarray spot quality classification. Thus, it is crucial to identify and remove these errors if automation is to replace the still common practice of visually assessing spot quality, an extremely expensive and time-consuming procedure. A major problem in microarray spot quality classification methods proposed in the literature is the correlation among the features extracted from the spots. In this paper, we propose using a random subspace ensemble of neural networks and a feature selection algorithm to improve the performance of our microarray spot quality classification method. Our best method obtains an error under the receiver operating characteristic curve (EAUR) of 0.3 outperforming the stand-alone support vector machine EAUR of 1.7. The consistency of our proposed approach makes it a viable alternative to the labour-intensive manual method of spot quality assessment.

Keywords

Random subspace ensembles Neural networks Support vector machine Feature selection Microarray spot quality 

References

  1. 1.
    Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science 270:467–470CrossRefGoogle Scholar
  2. 2.
    Hautaniemi S, Edgren H, Vesanen P, Wolf M, Järvinen AK, Yli-Harja O, Astola J, Kallioniemi O, Monni O (2003) A novel strategy for microarray quality control using Bayesian networks. Bioinformatics 19(16):2031–2038CrossRefGoogle Scholar
  3. 3.
    Nanni L, Lumini A (2007) Ensemblator: an ensemble of classifiers for reliable classification of Biological Data. Pattern Recogn Lett 28(5):622–630CrossRefGoogle Scholar
  4. 4.
    Bylesjö M, Eriksson D, Sjödin A, Sjöström M, Jansson S, Antti H, Trygg J (2005) MASQOT: a method for cDNA microarray spot quality control. BMC Bioinformatics 6:250. doi:10.1186/1471-2105-6-250 CrossRefGoogle Scholar
  5. 5.
    Brown C, Goodwin P, Sorger P (2001) Image metrics in the statistical analysis of DNA microarray data. Proc Natl Acad Sci USA 98:8944–8949CrossRefGoogle Scholar
  6. 6.
    Wang X, Ghosh S, Guo S (2001) Quantitative quality control in microarray image processing and data acquisition. Nucleic Acids Res 29:E75CrossRefGoogle Scholar
  7. 7.
    Model F, König T, Piepenbrock C, Adorján P (2002) Statistical process control for large scale microarray experiments. Bioinformatics 1:1–9Google Scholar
  8. 8.
    Chen Y, Kamat V, Dougherty E, Bittner M, Meltzer P, Trent J (2002) Ratio statistics of gene expression levels and applications to microarray data analysis. Bioinformatics 18:1207–1215CrossRefGoogle Scholar
  9. 9.
    RuosaariS, Hollmén J (2002) Image analysis for detecting faulty spots from microarray images. In: LangeS, Satoh K, Smith CH (eds) Proceedings of the 5th international conference on discovery science (DS2002). Springer, Berlin, pp 259–266Google Scholar
  10. 10.
    Bicego M, Del Rosario M, Murino V (2005) A supervised data-driven approach for microarray spot quality classification. Pattern Anal Applic 8:181–187CrossRefGoogle Scholar
  11. 11.
    Nanni L, Lumini A (2006) FuzzyBagging: a novel ensemble of classifiers. Pattern Recogn 39(3):488–490MATHCrossRefGoogle Scholar
  12. 12.
    Nanni L (2006) Cluster-based pattern discrimination: a novel technique for feature selection. Pattern Recogn Lett 27(6):682–687CrossRefGoogle Scholar
  13. 13.
    Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844CrossRefGoogle Scholar
  14. 14.
    Nanni L, Lumini A (2005) Ensemble of Parzen Window Classifiers for on-line signature verification. Neurocomputing 68:217–224CrossRefGoogle Scholar
  15. 15.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125CrossRefGoogle Scholar
  17. 17.
    Kittler J, Hatef M, Duin R, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239CrossRefGoogle Scholar
  18. 18.
    Brahnam S, Nanni L, Randall S (2007) Introduction to neonatal facial pain detection using common and advanced face classification techniques. In: Advanced computational intelligence paradigms in healthcare, vol 48, Springer Berlin, pp 225–253Google Scholar
  19. 19.
    Huang L, Dai Y (2005) A support vector machine approach for prediction of T cell epitopes. In: Proceedings of the third Asia-Pacific bioinformatics conference (APBC2005), Singapore, Jan 17–21, pp 312–328Google Scholar
  20. 20.
    Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51:181–207MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Loris Nanni
    • 1
  • Alessandra Lumini
    • 1
  • Sheryl Brahnam
    • 2
  1. 1.Department of Electronic, Informatics and Systems (DEIS)Università di BolognaCesenaItaly
  2. 2.Computer Information SystemsMissouri State UniversitySpringfieldUSA

Personalised recommendations