Neural Computing and Applications

, Volume 19, Issue 3, pp 477–485 | Cite as

Fuzzy h-ideals in h-hemiregular and h-semisimple \(\Upgamma\)-hemirings

  • Xueling Ma
  • Jianming Zhan
Original Article


In this paper, we introduce the concepts of some kinds of fuzzy h-ideals in \(\Upgamma\)-hemirings and obtain some of their related properties. In particular, the characterizations of prime fuzzy h-ideals in \(\Upgamma\)-hemirings are discussed. Finally, we show that the h-hemiregular and h-semisimple \(\Upgamma\)-hemirings can be described by using these kinds of fuzzy h-ideals.


(h-hemiregular, h-semisimple) \(\Upgamma\)-hemiring h-(h-bi-, h-quasi-, h-interior) ideal Prime fuzzy h-ideals Fuzzy (h-, h-bi-, h-quasi-, h-interior) ideal 



This research of the first author is partially supported by a grant of National Natural Science Foundation of China # 60875034; a grant of the Natural Science Foundation of Education Committee of Hubei Province, China, # D20092901; # Q20092907; # D20082903 and # B200529001 and also a grant of the Natural Science Foundation of Hubei Province, China # 2008CDB341; # 2009CDB340.


  1. 1.
    Barnes WE (1966) On the \(\Upgamma\)-rings of Nobusawa. Pac J Math 18:411–422zbMATHMathSciNetGoogle Scholar
  2. 2.
    Dudek WA (2008) Special types of intuitionistic fuzzy left h-ideals of hemirings. Soft Comput 12:359–364zbMATHCrossRefGoogle Scholar
  3. 3.
    Dudek WA (2006) Intuitionistic fuzzy h-ideals of hemirings. WSEAS Trans Math 12:1315–1331MathSciNetGoogle Scholar
  4. 4.
    Dudek WA, Shabir M, Irfan Ali M (2009) (α, β)-fuzzy ideals of hemirings. Comput Math Appl 58:310–321CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dutta TK, Chanda T (2005) Structures of fuzzy ideals of \(\Upgamma\)-rings. Bull Malays Math Sci Soc 28(1):9–15zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dutta TK, Chanda T (2005) Fuzzy prime ideals in \(\Upgamma\)-rings. Bull Malays Math Sci Soc 30(1):65–73MathSciNetGoogle Scholar
  7. 7.
    Dutta TK, Sardar SK (2002) On the operator semirings of a \(\Upgamma\)-semirings. SEA Bull Math 26:203–213zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dutta TK, Sardar SK (2000) Semiprime ideals and irreducible ideals of \(\Upgamma\)-semirings. Novi Sad J Math 30:97–108zbMATHMathSciNetGoogle Scholar
  9. 9.
    Glazek K (2002) A guide to the literature on semirings and their applications in mathematics and information sciences: with complete bibliography. Kluwer, DodrechtzbMATHGoogle Scholar
  10. 10.
    Henriksen M (1958) Ideals in semirings with commutative addition. Am Math Soc Notices 6:321Google Scholar
  11. 11.
    Hong SM, Jun YB (1995) A note on fuzzy ideals in gamma-rings. Bull Honam Math Soc 12:39–48Google Scholar
  12. 12.
    Jonathan S, Golan JS (1999) Semirings and their applications. Kluwer, DodrechtzbMATHGoogle Scholar
  13. 13.
    Jun YB (1995) On fuzzy prime ideals of \( \Upgamma\)-rings. Soochow J Math 21(1):41–48zbMATHMathSciNetGoogle Scholar
  14. 14.
    Jun YB, Kim HS, Öztürk MA (2005) Fuzzy k-ideals in semirings. J Fuzzy Math 13:351–364zbMATHMathSciNetGoogle Scholar
  15. 15.
    Jun YB, Lee CY (1992) Fuzzy \(\Upgamma\)-rings. Pusan Kyongnan Math J (presently, East Asian Math J) 8(2):163–170Google Scholar
  16. 16.
    Jun YB, Lee CY (1993) Fuzzy prime ideals of \(\Upgamma\)-rings. Pusan Kyongnan Math J (presently, East Asian Math J) 9(1):105–111Google Scholar
  17. 17.
    Jun YB, Öztürk MA, Song SZ (2004) On fuzzy h-ideals in hemirings. Inform Sci 162:211–226zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kondo M, Dudek WA (2005) On the Transfer Principle in fuzzy theory. Mathware Soft Comput 12:41–55zbMATHMathSciNetGoogle Scholar
  19. 19.
    Kyuno S, Nobusawa N, Sith NB (1987) Regular gamma rings. Tsukuba J. Math 11(2):371–382zbMATHMathSciNetGoogle Scholar
  20. 20.
    Ma X, Zhan J (2007) On fuzzy h-ideals of hemirings. J Syst Sci Complex 20:470–478CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ma X, Zhan J (2009) Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings. Inform Sci 179:1249–1268zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rao MK (1995) \(\Upgamma\)-semirings-1. SEA Bull Math 19:49–54zbMATHGoogle Scholar
  23. 23.
    Sardar SK, Dasgupta U (2004) On primitive \(\Upgamma\)-semirings. Novi Sad J Math 34:1–12MathSciNetGoogle Scholar
  24. 26.
    Wechler W (1978) The concept of fuzziness in automata and language theory. Akademie-Verlag, BerlinzbMATHGoogle Scholar
  25. 24.
    Yin Y, Huang X, Xu D, Li H (2009) The characterization of h-semisimple hemirings. Int J Fuzzy Syst 11:116–122Google Scholar
  26. 25.
    Yin Y, Li H (2008) The characterization of h-hemiregular hemirings and h-intra-hemiregular hemirings. Inform Sci 178:3451–3464zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Zadeh LA (2005) Toward a generalized theory of uncertainty (GTU)-an outline. Inform Sci 172:1–40zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Zadeh LA (2008) Is there a need for fuzzy logic? Inform Sci 178:2751–2779zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zhan J, Dudek WA (2007) Fuzzy h-ideals of hemirings. Inform Sci 177:876–886zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhan J, Tan Z (2003) T-fuzzy k-ideals of semirings. Sci Math Japon 58:597–601MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Department of MathematisHubei Institute for NationalitiesEnshiChina

Personalised recommendations