Neural Computing and Applications

, Volume 19, Issue 5, pp 775–783 | Cite as

Fuzzy n-fold ideals in BCH-algebras

  • Arsham Borumand Saeid
  • A. Namdar
  • M. Kuchaki Rafsanjani
Original Article

Abstract

In this paper, we introduce the notion of fuzzy n-folds (P, implicative and fantastic) ideals in BCH-algebras which is a natural generalization of notion of n-folds (P, implicative and fantastic) ideals in BCH-algebras and we stated and proved some theorems which determines the relationship between these notions. Finally we give some computational Algorithms for these notions.

Keywords

BCH-algebras (P, implicative, fantastic) Ideal (fuzzy, weak) n-fold (P, implicative, fantastic) Ideal 

References

  1. 1.
    Borumand Saeid A, Namdar A, Borzooei RA Ideal theory of BCH-algebras. World Appl Sci J (to appear)Google Scholar
  2. 2.
    Borumand Saeid A, Namdar A On n-fold ideals in BCH-algebras and computational algorithms, World Appl Sci J (to appear)Google Scholar
  3. 3.
    Chaudhry MA, Fakhar-Ud-Din H (2001) On some classes of BCH-algebra. J I M M S 25:205–211MATHMathSciNetGoogle Scholar
  4. 4.
    Dudek WA, Thomys H (1990) On decompositions of BCH- algebras. Math Japon 35:1131–1138MATHMathSciNetGoogle Scholar
  5. 5.
    Hajek P (1998) Metamathematics of fuzzy logic. Kluwer, DordrechtMATHGoogle Scholar
  6. 6.
    Haveshki M, Borumand Saeid A, Eslami E (2006) Some types of filters in BL-algebras. Soft Comput 10:657–664MATHCrossRefGoogle Scholar
  7. 7.
    Hu QP, Li X (1983) On BCH- algebras. Math Sem Notes 11:313–320MATHMathSciNetGoogle Scholar
  8. 8.
    Huang YS (2006) BCI-algebra. Science Press, ChinaGoogle Scholar
  9. 9.
    Imai Y, Iseki K (1966) On axiom systems of propositional calculi. XIV Proc Jpn Acad 42:19–22MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Iseki K (1966) An algebra related with a propositional calculus. XIV Proc Jpn Acad 42:26–29MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Iseki K, Tanaka S (1978) An introductation to the theory of BCK-algebra. Math Jpn 23:1–26MATHMathSciNetGoogle Scholar
  12. 12.
    Iseki K (1980) On BCI-algebra. Math Sem Notes 8:125–130MATHMathSciNetGoogle Scholar
  13. 13.
    Xi OA (1991) Fuzzy BCK- algebras. Math Japonica 36:935–942MATHGoogle Scholar
  14. 14.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhang XH, Jiang H, Bhatti SA (1994) On P-ideals of a BCI-algebra. Punjab Univ J Math 27:121–128MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Arsham Borumand Saeid
    • 1
  • A. Namdar
    • 2
  • M. Kuchaki Rafsanjani
    • 3
  1. 1.Department of MathematicsShahid Bahonar University of KermanKermanIran
  2. 2.Department of MathematicsIslamic Azad University Zarindasht BranchShirazIran
  3. 3.Department of Computer EngineeringIslamic Azad University Kerman BranchKermanIran

Personalised recommendations