Neural Computing and Applications

, Volume 18, Issue 5, pp 447–453 | Cite as

High-voltage equipment condition monitoring and diagnosis system based on information fusion

ISNN 2008


As high-voltage electric equipment has complex structure and works in harsh environments, fiber Bragg grating (FBG) sensors are applied to realize the real-time monitoring of some parameters in which temperature is the main parameter. Using FBG sensors to monitor temperature of high-voltage electric equipment can overcome the disadvantages of harsh monitoring environment such as high-voltage, big current, strong electromagnetic interference and so on. The fault of high-voltage electric equipment is difficult to be distinguished as there may be many different reasons. The traditional or simple methods cannot totally meet the demand of fault diagnosis of high-voltage electric equipment. First, taking neural network as a classifier to distinguish different fault types from complex fault information in the feature layer can supply a good foundation to final information fusion diagnosis. Second, Dempster–Shafer evidence theory is used to make a comprehensive diagnosis of fault information in the decision layer. All the uses above can increase the speed and accuracy of diagnosis and have practical significance. The fault diagnosis system shows good results and provides an effective way to realize the real-time condition monitoring and more accurate fault diagnosis of high-voltage electric equipment.


Information fusion Condition monitoring Fault diagnosis FBG sensing system Neural network 



This article was supported by the Natural Science Foundation of China (Grant No. 60674107), the Natural Science Foundation of Hebei Province (Grant No. F2006000343), and the Research and Development Plan of Science and Technology of Shijiazhuang (No. 06713026A).


  1. 1.
    Aggarwal RK, Johns AT, Jayasinghe JB, Su W (2000) An overview of the condition monitoring of over headlines. Electr Power Syst Res 53:15–21. doi:10.1016/S0378-7796(99)00037-1 CrossRefGoogle Scholar
  2. 2.
    Tenbohlen S, Figel F (2000) On-line condition monitoring of power transformers. Power Engineering Society Winter Meeting. IEEE 3:2211–2216Google Scholar
  3. 3.
    Boger L, Malte HG, Meyer LO et al (2008) Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos Sci Technol 68:1886–1894. doi:10.1016/j.compscitech.2008.01.001 CrossRefGoogle Scholar
  4. 4.
    Shenghe Sun (2002) The fiber measurement and sensing technology. Harbin Poly Technical University Press, HarbinGoogle Scholar
  5. 5.
    Mandal J, Sun T, Grattan KT (2005) Fiber laser-based temperature sensor systems using uniform wavelength-matched Bragg grating reflectors. Sens Actuators 7:451–461. doi:10.1016/j.sna.2005.01.028 CrossRefGoogle Scholar
  6. 6.
    Rafiee J, Arvani F, Harifi A et al (2007) Intelligent condition monitoring of agear box using artificial neural network. Mech Syst Signal Process 21:1746–1754. doi:10.1016/j.ymssp.2006.08.005 CrossRefGoogle Scholar
  7. 7.
    Timothy AH, Hojjat A (2000) Monitoring the behavior of steel structures using distributed optical fiber sensors. J Constr Steel Res 53:267–281. doi:10.1016/S0143-974X(99)00043-7 CrossRefGoogle Scholar
  8. 8.
    Booth C, McDonald JR (1998) The use of artificial neural networks for condition monitoring of electrical power transformers. Neural Comput 23:97–109Google Scholar
  9. 9.
    Cullen JD, Athi N, Al-Jader M et al (2008) Multi sensor fusion for online monitoring of the quality of spot welding in automotive industry. Measurement 41:412–423. doi:10.1016/j.measurement.2007.01.006 CrossRefGoogle Scholar
  10. 10.
    Lyons WB, Ewald H, Flanagan C, Lewis E (2003) A multi-point optical fibre sensor for condition monitoring in process water systems based on pattern recognition. Measurement 34:301–312. doi:10.1016/S0263-2241(03)00048-4 CrossRefGoogle Scholar
  11. 11.
    Belur V (2003) Dasarathy: information fusion as a tool in condition monitoring. Inf Fusion 4:71–73CrossRefGoogle Scholar
  12. 12.
    Kolla SR, Altman SD (2007) Artificial neural network based fault identification scheme implementation for a three-phase induction motor. ISA Trans 46:261–266. doi:10.1016/j.isatra.2006.08.002 CrossRefGoogle Scholar
  13. 13.
    Jie Z (2006) Improved on-line process fault diagnosis through information fusion in multiple neural networks. Comput Chem Eng 30:558–571. doi:10.1016/j.compchemeng.2005.11.002 CrossRefGoogle Scholar
  14. 14.
    Cheol O, Stephen G (2007) Recognizing vehicle classification information from blade sensor signature. Pattern Recognit Lett 28:1041–1049. doi:10.1016/j.patrec.2007.01.010 CrossRefGoogle Scholar
  15. 15.
    Yanjing S, Shen Z, Changxin M (2007). Improved BP Neural Netw Transformer Fault Diagn China Univ Min Technol 17:138–142Google Scholar
  16. 16.
    Lotufo ADP, Mara LML, Carlos RM (2007) Sensitivity analysis by neural networks applied to power systems transient stability. Electr Power Syst Res 77:730–738. doi:10.1016/j.epsr.2005.09.020 Google Scholar
  17. 17.
    Echavarren FM, Lobato E, Rouco L (2006) A power flow solvability identification and calculation algorithm. Electr Power Syst Res 76:242–250. doi:10.1016/j.epsr.2005.06.006 CrossRefGoogle Scholar
  18. 18.
    Patricia RSJ, Syed MI, Tony W et al (1998) A class of hybrid intelligent system for fault diagnosis in electric power systems. Neurocomputing 23:207–224. doi:10.1016/S0925-2312(98)00066-6 CrossRefGoogle Scholar
  19. 19.
    Paras M, Tomonobu S, Naomitsu U et al (2006) A neural network based several-hour-ahead electric load forecasting using similar days approach. Electr Power Energy Syst 28:367–373. doi:10.1016/j.ijepes.2005.12.007 CrossRefGoogle Scholar
  20. 20.
    Ayan K, Arifoglu U (2004) Power flow state estimator using two-layer neural network structure. Electr Power Syst Res 69:249–258. doi:10.1016/j.epsr.2003.09.001 CrossRefGoogle Scholar
  21. 21.
    Wu X, Chen H, Wang W et al (2001) Multi-index fusion-based fault diagnosis theory and methods. Mech Syst Signal Process 15:995–1006. doi:10.1006/mssp.1999.1279 CrossRefGoogle Scholar
  22. 22.
    Nan Zhang N, Mladen K (2007) A real time fault analysis tool for monitoring operation of transmission line protective relay. Electr Power Syst Res 77:361–370. doi:10.1016/j.epsr.2006.03.015 CrossRefGoogle Scholar
  23. 23.
    Otman B, Yuan XH (2007) Engine fault diagnosis based on multi-sensor information fusion using Dempster–Shafer evidence theory. Inf Fusion 8:379–386CrossRefGoogle Scholar
  24. 24.
    Azadeha A, Ghaderia SF, Anvaria M et al (2007) Performance assessment of electric power generations using an adaptive neural network algorithm. Energy Policy 35:3155–3166. doi:10.1016/j.enpol.2006.11.012 CrossRefGoogle Scholar
  25. 25.
    Fan Xianfeng, Ming JZ (2006) Fault diagnosis of machines based on D–S evidence theory. Pattern Recognit Lett 27:366–376. doi:10.1016/j.patrec.2005.08.025 CrossRefGoogle Scholar
  26. 26.
    Bo-Suk Y, Kwang JK (2006) Application of Dempster–Shafer theory in fault diagnosis of induction motors using vibration and current signals. Mech Syst Signal Process 20:403–420. doi:10.1016/j.ymssp.2004.10.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Yongwei Li
    • 1
  • Zhenyu Wang
    • 1
    • 2
  • Xingde Han
    • 1
  • Yalun Li
    • 1
  1. 1.College of Electrical and Information EngineeringHebei University of Science and TechnologyShijiazhuangChina
  2. 2.College of AutomationBeijing Institute of TechnologyBeijingChina

Personalised recommendations