Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming

  • Hanifi Çanakcı
  • Adil Baykasoğlu
  • Hamza Güllü
Original Article

Abstract

In this paper, two soft computing approaches, which are known as artificial neural networks and Gene Expression Programming (GEP) are used in strength prediction of basalts which are collected from Gaziantep region in Turkey. The collected basalts samples are tested in the geotechnical engineering laboratory of the University of Gaziantep. The parameters, “ultrasound pulse velocity”, “water absorption”, “dry density”, “saturated density”, and “bulk density” which are experimentally determined based on the procedures given in ISRM (Rock characterisation testing and monitoring. Pergamon Press, Oxford, 1981) are used to predict “uniaxial compressive strength” and “tensile strength” of Gaziantep basalts. It is found out that neural networks are quite effective in comparison to GEP and classical regression analyses in predicting the strength of the basalts. The results obtained are also useful in characterizing the Gaziantep basalts for practical applications.

Keywords

Artificial neural networks Gene expression programming Basalt Tensile and compressive strength 

References

  1. 1.
    ISRM (1981) Rock characterisation testing and monitoring. In: Brown ET (ed) Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38:329–343. doi:10.1007/s00603-005-0061-8 CrossRefGoogle Scholar
  3. 3.
    Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38:269–284. doi:10.1016/S1365-1609(00)00078-2 CrossRefGoogle Scholar
  4. 4.
    Meulenkamp F (1997) Improving the prediction of the UCS, by equotip readings using statistical and neural network models. Mem Cent Eng Geol Neth 162:127Google Scholar
  5. 5.
    Meulenkamp F, Alveraz GM (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from equotip hardness. Int J Rock Mech Min Sci 36:29–39. doi:10.1016/S0148-9062(98)00173-9 CrossRefGoogle Scholar
  6. 6.
    Nie X, Zhang Q (1994) Prediction of rock mechanical behaviour by artificial neural network. A comparison with traditional method. In IV CSMR, Integral Approach to Applied Rock Mechanics, Santiago, ChileGoogle Scholar
  7. 7.
    Garret JH Jr (1994) Where and why artificial neural networks are applicable in civil engineering. J Comput Civ Eng 8:129–130. doi:10.1061/(ASCE)0887-3801(1994)8:2(129) CrossRefGoogle Scholar
  8. 8.
    Tolun N, Pamir HN (1975) Explanatory text of the geological map of Turkey-Hatay. MTA (General Directorate of Mineral Research and Exploration), AnkaraGoogle Scholar
  9. 9.
    MTA (General Directorate of Mineral Research and Exploration) (1994) Geological Map of the Gaziantep-K24 Quadrangle. Ankara, TurkeyGoogle Scholar
  10. 10.
    Shakoor A, West TR, Scholer CF (1982) Physical characteristics of some Indiana argillaceous carbonates regarding their freeze thaw resistance in concrete. Bull Assoc Eng Geol 19:371–384Google Scholar
  11. 11.
    ASTM C127 (1997) Specific gravity and absorption of coarse aggregateGoogle Scholar
  12. 12.
    BSI (1983) British specification for aggregates from natural sources for concrete. BS 882: 1983. British Standards Institution, LondonGoogle Scholar
  13. 13.
    Birch F (1961) The velocity of compressional waves in rocks 10 kbars. J Geophys Res 66(Part 2):2199–2224. doi:10.1029/JZ066i007p02199 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Ramamurthy T, Arora VK (1993) A classification for intact and jointed rocks. In: Anagnostopoulos A et al (eds) Geotechnical Engineering of Hard Soils–Soft Rocks. A.A. Balkema, Rotterdam, pp 235–242Google Scholar
  15. 15.
    Hsu S-C, Nelson PP (2002) Characterization of eagle ford shale. Eng Geol 67:169–183. doi:10.1016/S0013-7952(02)00151-5 CrossRefGoogle Scholar
  16. 16.
    Baykasoğlu A, Dereli T, Tanış S (2004) Prediction of cement strength using soft computing techniques. Cement Concr Res 34:2083–2090. doi:10.1016/j.cemconres.2004.03.028 CrossRefGoogle Scholar
  17. 17.
    Venkatesan D, Kannan K, Saravanan R (2008) A genetic algorithm-based artificial neural network model for the optimization of machining processes. Neural Comput Appl. doi:10.1007/s00521-007-0166-y
  18. 18.
    Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13:87–129MATHGoogle Scholar
  19. 19.
    Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, CambridgeMATHGoogle Scholar
  20. 20.
    Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Welsley, MAMATHGoogle Scholar
  21. 21.
    Zhou C, Xiao W, Tirpak TM, Nelson PC (2002) Discovery of classification rules by using gene expression programming, In: the proceedings of the 2002 international conference on artificial intelligence (IC-AI’02), Las Vegas, June, pp 1355–1361Google Scholar
  22. 22.
    Dereli T, Baykasoğlu A (2000) The use of artificial intelligence techniques in design and manufacturing. A review. Gazi Univ J Polytechnic 3:27–60Google Scholar
  23. 23.
    Zupan J, Gasteiger J (1993) Neural networks for chemists. VCH Publishers, NYGoogle Scholar
  24. 24.
    Wang D (1993) Pattern recognition: neural networks in perspective. IEEE Expert (August):52–60. doi:10.1109/64.223991
  25. 25.
    Nielsen DH (1988) Neurocomputing: picking the human brain. IEEE Spectr 25:36–41. doi:10.1109/6.4520 CrossRefGoogle Scholar
  26. 26.
    Kohonen T (1988) An introduction to neural computing. Neural Netw 1:3–16. doi:10.1016/0893-6080(88)90020-2 CrossRefGoogle Scholar
  27. 27.
    Elmas Ç (2003) Yapay Sinir Ağları. Ankara. Seçkin YayıncılıkGoogle Scholar
  28. 28.
    Ergün M (1995) SPSS for Windows. Ankara, Ocak YayınlarıGoogle Scholar
  29. 29.
    NeuroDimension Company. http://www.neurosolutions.com
  30. 30.

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Hanifi Çanakcı
    • 1
  • Adil Baykasoğlu
    • 2
  • Hamza Güllü
    • 1
  1. 1.Department of Civil EngineeringUniversity of GaziantepGaziantepTurkey
  2. 2.Department of Industrial Engineering, Faculty of EngineeringUniversity of GaziantepGaziantepTurkey

Personalised recommendations