Interval-valued fuzzy n-ary subhypergroups of n-ary hypergroups

Original Article


This paper provides a continuation of ideas presented by Davvaz and Corsini (J Intell Fuzzy Syst 18(4):377–382, 2007). Our aim in this paper is to introduce the concept of quasicoincidence of a fuzzy interval value with an interval-valued fuzzy set. This concept is a generalized concept of quasicoincidence of a fuzzy point within a fuzzy set. By using this new idea, we consider the interval-valued (∈, ∈ ∨q)-fuzzy n-ary subhypergroup of a n-ary hypergroup. This newly defined interval-valued (∈, ∈ ∨q)-fuzzy n-ary subhypergroup is a generalization of the usual fuzzy n-ary subhypergroup. Finally, we consider the concept of implication-based interval-valued fuzzy n-ary subhypergroup in an n-ary hypergroup; in particular, the implication operators in £ukasiewicz system of continuous-valued logic are discussed.


Hypergroup n-ary hypergroup Fuzzy set Belong to Quasicoincident with n-ary subhypergroup Fuzzy (∈, ∈ ∨q)-fuzzy n-ary subhypergroup 


  1. 1.
    Ameri R, Zahedi MM (1999) Hyperalgebraic system. Italian J Pure Appl Math 6:21–32MATHMathSciNetGoogle Scholar
  2. 2.
    Bhakat SK, Das P (1992) On the definition of a fuzzy subgroup. Fuzzy Sets Syst 51:235–241MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bhakat SK, Das P (1996) (∈, ∈ ∨q)-fuzzy subgroup. Fuzzy Sets Syst 80:359–368MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corsini P (1994) Join spaces, power sets, fuzzy sets. In: Stefanescu M (ed) Proceedings of the 5th international congress on algebraic hyperstructures and applications (Iaşi, Romani, 4–10 July 1993). Hadronic Press, Palm Harbor, pp 45–52Google Scholar
  5. 5.
    Corsini P (1993) Prolegomena of hypergroup theory, 2nd edn. Aviani Editor, UdineGoogle Scholar
  6. 6.
    Corsini P (2003) A new connection between hypergroups and fuzzy sets. Southeast Asian Bull Math 27(2):221–229MATHMathSciNetGoogle Scholar
  7. 7.
    Corsini P, Leoreanu V (2003) Applications of hyperstructures theory (advances in mathematics). Kluwer, DordrechtGoogle Scholar
  8. 8.
    Corsini P, Tofan I (1997) On fuzzy hypergroups. Pure Math Appl 8:29–37MATHMathSciNetGoogle Scholar
  9. 9.
    Das PS (1981) Fuzzy groups and level subgroups. J Math Anal Appl 85:264–269CrossRefGoogle Scholar
  10. 10.
    Davvaz B (1999) Fuzzy H v-groups. Fuzzy Sets Syst 101:191–195MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Davvaz B (2001) Fuzzy H v-submodules. Fuzzy Sets Syst 117:477–484MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Davvaz B (2008) Approximations in n-ary algebraic systems. Soft Comput 12:409–418MATHCrossRefGoogle Scholar
  13. 13.
    Davvaz B (2006) (∈, ∈ ∨q)-fuzzy subnear-rings and ideals. Soft Comput 10:206–211MATHCrossRefGoogle Scholar
  14. 14.
    Davvaz B (2005) On connection between uncertainty algebraic hypersystems and probability spaces. Int J Uncertain Fuzziness Knowl Based Syst 13(3):337–345MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Davvaz B, Vougiouklis T (2006) n-ary hypergroups. Iran J Sci Technol Trans A 30(A2):165–174MathSciNetGoogle Scholar
  16. 16.
    Davvaz B, Corsini P (2007) Fuzzy n-ary hypergroups. J Intell Fuzzy Syst 18(4):377–382MATHGoogle Scholar
  17. 17.
    Davvaz B, Corsini P (2006) Generalized fuzzy sub-hyperquasigroups of hyperquasigroups. Soft Comput 10:1109–1114MATHCrossRefGoogle Scholar
  18. 18.
    Davvaz B, Dudek WA, Fuzzy n-ary groups as a generalization of Rosenfeld’s fuzzy groups. J Mult Valued Logic Soft Comput (in press)Google Scholar
  19. 19.
    Dörnte W (1929) Unterschungen uber einen verallgemeinerten gruppenbegriff. Math Z 6:1–19CrossRefGoogle Scholar
  20. 20.
    Dudek WA (2001) On some old and new problems in n-ary groups. Quasigroups Relat Syst 8:15–36MATHMathSciNetGoogle Scholar
  21. 21.
    Dudek WA (2000) Fuzzification of n-ary groupoids. Quasigroups Relat Syst 7:45–66MATHMathSciNetGoogle Scholar
  22. 22.
    Dudek WA, Davvaz B, Jun YB (2005) On intuitionistic fuzzy subhyperquasigroups of hyperquasigroups. Inf Sci 170:251–262MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Krasner E (1904) An extension of the group concept (reported by L.G. Weld). Bull Am Math Soc 10:290–291Google Scholar
  24. 24.
    Leoreanu V (2005) About hyperstructures associated with fuzzy sets of type 2. Italian J Pure Appl Math 17:127–136MATHMathSciNetGoogle Scholar
  25. 25.
    Leoreanu-Fotea V, Davvaz B (2008) n-hypergroups and binary relations. Eur J Combinat 29:1207–1218MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Marty F (1934) Sur une generalization de la notion de group. In: Eighth congress math Scandenaves, Stockholm, pp 45–49Google Scholar
  27. 27.
    Ming PP, Ming YM (1980) Fuzzy topology I, neighborhood structure of a fuzzy point and Moors–Smith convergence. J Math Anal 76:571–599MATHCrossRefGoogle Scholar
  28. 28.
    Rosenfeld A (1971) Fuzzy groups. J Math Anal Appl 35:512–517MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Vougiouklis T (1988) Groups in hypergroups. Anal Discrete Math 37:459–468CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vougiouklis T (1994) Hyperstructures and their representations. Hadronic Press, Palm HarborMATHGoogle Scholar
  31. 31.
    Yuan X, Bhang C, Ren Y (2003) Generalized fuzzy groups and many-valued implications. Fuzzy Sets Syst 138:205–211MATHCrossRefGoogle Scholar
  32. 32.
    Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zhan J, Davvaz B, Shum KP (2007) A new view of fuzzy hypermodules. Acta Math Sin Engl Ser 23(8):1345–1356MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Zhan J, Davvaz B, Shum KP (2008) A new view of fuzzy hypernear-rings. Inf Sci 178:425–438MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zahedi MM, Bolurian M, Hasankhani A (1995) On polygroups and fuzzy subpolygroups. J Fuzzy Math 3:1–15MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Department of MathematicsYazd UniversityYazdIran
  2. 2.Department of MathematicsKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations