Advertisement

Neural Computing and Applications

, Volume 18, Issue 1, pp 93–103 | Cite as

Design of intelligent power controller for DC–DC converters using CMAC neural network

  • Chun-Fei HsuEmail author
Original Article

Abstract

DC–DC converters are the devices which can convert a certain electrical voltage to another level of electrical voltage. They are very popularly used because of the high efficiency and small size. This paper proposes an intelligent power controller for the DC–DC converters via cerebella model articulation controller (CMAC) neural network approach. The proposed intelligent power controller is composed of a CMAC neural controller and a robust controller. The CMAC neural controller uses a CMAC neural network to online mimic an ideal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. Finally, a comparison among a PI control, adaptive neural control and the proposed intelligent power control is made. The experimental results are provided to demonstrate the proposed intelligent power controller can cope with the input voltage and load resistance variations to ensure the stability while providing fast transient response and simple computation.

Keywords

Adaptive control Robust control CMAC neural network DC–DC converter 

Notes

Acknowledgments

The authors appreciate the partial financial support from the National Science Council of Republic of China under grant NSC 96-2218-E-216-001. The authors would like to express their gratitude to the Reviewers for their valuable comments and suggestions.

References

  1. 1.
    Pressman AI (1998) Switching power supply design. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Alvarez-Ramirez J, Cervantes I, Espinosa-Perez G, Maya P, Morales A (2001) A stable design of PI control for DC–DC converters with an RHS zero. IEEE Trans Circuits Syst I 48(1):103–106CrossRefGoogle Scholar
  3. 3.
    Mazumder SK, Nayfeh AH, Borojevic D (2002) Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428–437CrossRefGoogle Scholar
  4. 4.
    Lopez M, Vicuna LG, Castilla M, Gaya P, Lopez O (2004) Current distribution control design for paralleled DC/DC converters using sliding-mode control. IEEE Trans Ind Electron 51(2):419–428CrossRefGoogle Scholar
  5. 5.
    Viswanathan K, Oruganti R, Srinivasan D (2005) Nonlinear function controller: a simple alternative to fuzzy logic controller for a power electronic converter. IEEE Trans Ind Electron 52(5):1439–1448CrossRefGoogle Scholar
  6. 6.
    He D, Nelms RM (2005) Fuzzy logic average current-mode control for DC–DC converters using an inexpensive 8-bit microcontroller. IEEE Trans Ind Appl 41(6):1531–1538CrossRefGoogle Scholar
  7. 7.
    Rubaai A, Ofoli AR, Burge L, Garuba M (2005) Hardware implementation of an adaptive network-based fuzzy controller for DC–DC converters. IEEE Trans Ind Appl 41(6):1557–1565CrossRefGoogle Scholar
  8. 8.
    Hsu CF, Lin CM, Cheng KH (2006) Supervisory intelligent control system design for forward DC–DC converters. IEE Proc Electr Power Appl 153(5):691–701CrossRefGoogle Scholar
  9. 9.
    Cheng KH, Hsu CF, Lin CM, Lee TT, Li C (2007) Fuzzy-neural sliding-mode control for DC–DC converters using asymmetric Gaussian membership functions. IEEE Trans Ind Electron 54(3):1528–1536CrossRefGoogle Scholar
  10. 10.
    Hsu CF, Lin CM, Chen TY (2005) Neural-network-identification-based adaptive control of wing rock motion. IEE Proc Control Theory Appl 152(1):65–71CrossRefGoogle Scholar
  11. 11.
    Duarte-Mermoud MA, Suarez AM, Bassi DF (2005) Multivariable predictive control of a pressurized tank using neural networks. Neural Comput Appl 15(1):18–25Google Scholar
  12. 12.
    Leu YG, Wang WY, Lee TT (2005) Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems. IEEE Trans Neural Netw 16(4):853–861CrossRefGoogle Scholar
  13. 13.
    Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17(5):1175–1183CrossRefGoogle Scholar
  14. 14.
    Hsu CF (2007) Self-organizing adaptive fuzzy neural control for a class of nonlinear systems. IEEE Trans Neural Netw 18(4):1232–1241CrossRefGoogle Scholar
  15. 15.
    Peng YF, Wai RJ, Lin CM (2004) Implementation of LLCC-resonant driving circuit and adaptive CMAC neural network control for linear piezoelectric ceramic motor. IEEE Trans Ind Electron 51(1):35–48CrossRefGoogle Scholar
  16. 16.
    Lin CM and Peng YF (2004) Adaptive CMAC-based supervisory control for uncertain nonlinear systems. IEEE Trans Syst Man Cybern B Cybern 34(2):1248–1260CrossRefGoogle Scholar
  17. 17.
    Chen JY, Tsai PS, Wong CC (2005) Adaptive design of a fuzzy cerebellar model arithmetic controller neural network. IEE Proc Control Theory Appl 152(2):133–137CrossRefGoogle Scholar
  18. 18.
    Lin CM, Chen CH (2006) Adaptive RCMAC sliding mode control for uncertain nonlinear systems. Neural Comput Appl 15(1):253–267Google Scholar
  19. 19.
    Wu TF, Tsai PS, Chang FR, Wang LS (2006) Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation. IEE Proc Control Theory Appl 153(6):647–657CrossRefGoogle Scholar
  20. 20.
    Lane SH, Handelman DA, Gelfand JJ (1992) Theory and development of higher-order CMAC neural networks. IEEE Control Syst Mag 12(2):23–30CrossRefGoogle Scholar
  21. 21.
    Su SF, Lee ZJ, Wang YP (2006) Robust and fast learning for fuzzy cerebellar model articulation controllers. IEEE Trans Syst Man Cybern B Cybern 36(1):203–208CrossRefGoogle Scholar
  22. 22.
    Slotine JJE, Li WP (1991) Applied nonlinear control. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  23. 23.
    Wang WY, Chan ML, Hsu CCJ, Lee TT (2002) H tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach. IEEE Trans Syst Man Cybern B Cybern 32(4):483–492CrossRefGoogle Scholar
  24. 24.
    Lin CM, Peng YF, Hsu CF (2004) Robust cerebellar model articulation controller design for unknown nonlinear systems. IEEE Trans Circuits Syst II 51(7):354–358CrossRefGoogle Scholar
  25. 25.
    Lee TS, Lin CH, Lin FJ (2005) An adaptive H controller design for permanent magnet synchronous motor drives. Control Eng Pract 13(4):425–439CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Department of Electrical EngineeringChung Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations