Neural Computing and Applications

, Volume 18, Issue 1, pp 57–64 | Cite as

Artificial neural network based design of a three-layered microstrip circular ring antenna with specified multi-frequency operation

Original Article
  • 178 Downloads

Abstract

This paper deals with the utilization of Artificial Neural Networks (ANN) methodology in the design of microstrip antennas having a priori defined operational features. A printed annular ring antenna, textured by slits, was designed in a multilayered dielectric substrate. The width and the position of the slits along with the values of the structural parameters and the feed position of the antenna affect directly its frequency performance. The inverse problem, namely to find out the proper combination of all these parameter values which would yield the desired frequency response, was solved via a Multiple Layer Perceptron (MLP) Neural Network.

Keywords

Microstrip antennas Artificial neural networks Multiband printed antennas Multiple layer perceptron (MLP) neural network 

References

  1. 1.
    Anguera J, Font G, Puente C, Borjia C, Soler J (2003) Multifrequency microstrip patch antenna using multiple stacked elements. IEEE Microw Wirel Commun 13:123–124CrossRefGoogle Scholar
  2. 2.
    Balanis CA (1989) Advanced engineering electromagnetics. Wiley, New YorkGoogle Scholar
  3. 3.
    Chen ZZ, Ganjara AD, Chen XM (2002) A dual—L antenna with a novel tuning technique for dual frequency applications. IEEE Trans Antennas Propag 50:402–403CrossRefGoogle Scholar
  4. 4.
    Christodoulou C, Georgiopoulos M (2001) Applications of neural networks in electromagnetics. Artech House, BostonGoogle Scholar
  5. 5.
    Devi S, Panda DC, Pattnaik SS (2002) A novel method of using artificial neural networks to calculate input impedance of circular microstrip antenna. In: Proceedings IEEE Antennas Propag. Society International Symposium, vol 3, pp 462–465Google Scholar
  6. 6.
    Ganatsos T, Siakavara K (2005) Improved microstrip antenna polarization by using electromagnetic band-gap substrates. In: Proceedings of international conference on antenna technologies (ICAT 2005), Ahmedabad, India, 23–24 February, pp 539–543Google Scholar
  7. 7.
    Gopalakrishnan R, Gunasekaran N (2005) Design of equilateral triangular microstrip antenna using artificial neural networks. In: IEEE international workshop on antenna technology: small antennas and novel metamaterials, IWAT, pp 246–249Google Scholar
  8. 8.
    Guo YX, Luke KM, Lee KF et al (2002) A quarter wave U-shaped patch antenna with two unequal arms for wideband and dual frequency operation. IEEE Trans Antennas Propag 50:1082–1087CrossRefGoogle Scholar
  9. 9.
    Haykin S (1999) Neural networks—a comprehensive foundation, 2nd edn. Prentice-Hall, BostonMATHGoogle Scholar
  10. 10.
    Kanaujia BK, Vishvakarma BR (2002) Design considerations for the development of the annular ring microstrip antenna. Int J Electron 81:665–677CrossRefGoogle Scholar
  11. 11.
    Linpar (Software), Version 1.0, Artech House, BostonGoogle Scholar
  12. 12.
    Lu JH, Wong KL (1999) Compact dual-frequencycircular microstrip antenna with an offset circular slot. Microw Opt Technol Lett 22:254–256CrossRefGoogle Scholar
  13. 13.
    Mishra RK, Patnaik A (1998) Neural network-based CAD model for the design of a square—patch antennas. IEEE Trans Antennas Propag 46:1890–1891CrossRefGoogle Scholar
  14. 14.
    Neog DK, Pattnaik SS, Panda DC, Devi S, Pattnaik SS, Khuntia B, Malaya Dutta (2005) Design of wideband microstrip antenna and the use of artificial neural networks in parameter calculation. IEEE Trans Antennas Propag Mag 47:60–65CrossRefGoogle Scholar
  15. 15.
    Romeu J, Soler J (2001) Generalized Shierpinski fractal multiband antenna. IEEE Trans Antennas Propag 49:1237–1239CrossRefGoogle Scholar
  16. 16.
    Sarigoglou S, Guney K (1999) Calculation of resonant frequency for an equilateral microstrip antenna with the use of artificial neural networks. Microw Opt Technol Lett 14:89–93Google Scholar
  17. 17.
    Siakavara K, Tsaldaris F (2004) A multi-wideband microstrip antenna designed by the square—curve fractal technique. Microwave Opt Technol Lett 41:180–185CrossRefGoogle Scholar
  18. 18.
    Shynu SV, Augustin G, Aanadan CK, Mohanan P, Vasudevan K (2005) Development of a varactor-controlled dual frequency reconfigurable microstrip antenna. Microw Opt Technol Lett 46:375–377CrossRefGoogle Scholar
  19. 19.
    Yeo J, Mittra R (2003) Design of conformal multiband antennas based on fractal concepts. Microw Opt Technol Lett 36:333–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Department of Physics, Radiocommunications LabAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations