Neural Computing and Applications

, Volume 17, Issue 4, pp 339–345 | Cite as

Neural adaptive control for a class of nonlinear systems with unknown deadzone

  • Zhonghua Wang
  • Yong Zhang
  • Hui Fang
Original Article


This paper focuses on the adaptive control of a class of nonlinear systems with unknown deadzone using neural networks. By constructing a deadzone pre-compensator, a neural adaptive control scheme is developed using backstepping design techniques. Transient performance is guaranteed and semi-globally uniformly ultimately bounded stability is obtained. Another feature of this scheme is that the neural networks reconstruction error bound is assumed to be unknown and can be estimated online. Simulation results are given to demonstrate the effectiveness of the proposed controller.


Deadzone Adaptive control Neural networks Nonlinear systems Backstepping Robust control 


  1. 1.
    Recker D, Kokotović P, Rhode D, Winkelman J (1991) Adaptive nonlinear control of systems containing a deadzone. In: Proceedings of the 30th IEEE conference on decision and control, Brighton, England, pp 2111–2115Google Scholar
  2. 2.
    Gang T, Kokotović PV (1994) Adaptive control of plants with unknown deadzones. IEEE Trans Autom Control 39:59–68zbMATHCrossRefGoogle Scholar
  3. 3.
    Gang T, Tian M (1995) Design of adaptive dead-zone inverse for nonminimum phase plants. In: Proceedings of the 1995 ACC, Seattle, pp 2059–2063Google Scholar
  4. 4.
    Cho H-Y, Bai E-W (1998) Convergence results for an adaptive deadzone inverse. Int J Adapt Control Signal Process 12:451–466zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tian M, Gang T (1997) Adaptive dead-zone compensation for output-feedback canonical systems. Int J Contr 67:791–812zbMATHCrossRefGoogle Scholar
  6. 6.
    Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40:23–36CrossRefGoogle Scholar
  7. 7.
    Jie S, Sun JQ (2003) Sliding control accounting for hardware limitation of mechanical actuators with deadzone. J Sound Vib 266:905–911CrossRefGoogle Scholar
  8. 8.
    Corradini ML, Orlando G (2002) Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator. IEEE Trans Control Systems Technol 10:158–166Google Scholar
  9. 9.
    Šelmić RR, Lewis FL (2000) Deadzone compensation in motion control systems using neural networks. IEEE Trans Autom Control 45:602–613CrossRefGoogle Scholar
  10. 10.
    Tsang KM, Li G (2001) Robust nonlinear nominal-model following control to overcome deadzone nonlinearities. IEEE Trans Ind Electron 48:177–184CrossRefGoogle Scholar
  11. 11.
    Kim JH, Park JH, Lee SW, Edwin KP Chong: a two-layered fuzzy logic controller for systems with deadzones. IEEE Trans Ind Electron 41:155–162Google Scholar
  12. 12.
    Campos J, Lewis FL (1999) Deadzone compensation in discrete time using adaptive fuzzy logic. IEEE Trans Fuzzy Systems 7:697–707CrossRefGoogle Scholar
  13. 13.
    Lewis FL, Woo KT, Li XW, Li ZX (1999) Deadzone compensation in motion control systems using adaptive fuzzy logic control. IEEE Trans Control Systems Technol 7:731–742CrossRefGoogle Scholar
  14. 14.
    Oh JJ (2001) A deadzone compensator of a DC motor system using fuzzy logic control. IEEE Trans Systems Man Cybern C Appl Rev 31:42–48CrossRefGoogle Scholar
  15. 15.
    Wang XS, Su CY, Hong H (2004) Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40:407–413zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown dead-zone. In: Proceedings of 2004 IEEE conference on robotics, automation and mechatronics, Singapore, pp 513–518Google Scholar
  17. 17.
    Sanner RM, Slotine JJE (1992) Gaussian networks for direct adaptive control. IEEE Trans Neural Netw 3:837–863CrossRefGoogle Scholar
  18. 18.
    Zhang T, Ge SS, Hang CC (2000) Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36:1835–1846zbMATHMathSciNetGoogle Scholar
  19. 19.
    Li Y, Sheng Q, Zhuang X, Okyay K (2004) Robust and adaptive backstepping control for nonlinear system using RBF neural networks. IEEE Trans Neural Netw 15:693–701CrossRefGoogle Scholar
  20. 20.
    Hsu CF, Lin CM, Lee TT (2006) Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans Neural Netw 17:1175–1183CrossRefGoogle Scholar
  21. 21.
    Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Wiley, LondonGoogle Scholar
  22. 22.
    Polycarpou MM (1996) Stable adaptive neural control scheme for nonlinear system. IEEE Trans Autom Control 41:447–451zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.School of Control Science and EngineeringUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations