Neural Computing & Applications

, Volume 14, Issue 4, pp 273–281 | Cite as

A Review of data fusion models and architectures: towards engineering guidelines

  • Jaime Esteban
  • Andrew Starr
  • Robert Willetts
  • Paul Hannah
  • Peter Bryanston-Cross
Original Article

Abstract

This paper reviews the potential benefits that can be obtained by the implementation of data fusion in a multi-sensor environment. A thorough review of the commonly used data fusion frameworks is presented together with important factors that need to be considered during the development of an effective data fusion problem-solving strategy. A system-based approach is defined for the application of data fusion systems within engineering. Structured guidelines for users are proposed.

Keywords

Data fusion Frameworks Intelligent systems Engineering guidelines 

Notes

Acknowledgements

This work was supported by the INTErSECT Faraday Partnership and EPSRC as part of project GR/M44484 “The application of data fusion to a multi sensored intelligent engine”. The authors gratefully acknowledge the assistance of the following partners: Corus, National Physical Laboratory, QinetiQ, Rolls-Royce, and Wolfson Maintenance; and particularly of Dr Mark Bedworth, Mr Graham Hesketh, Prof. John Macintyre, and Mrs Jane O’Brien in the preparation of the guidelines.

References

  1. 1.
    Edwards I, Gross XE, Lowden DW, Strachan P. (1993) Fusion of NDT data. Br J NDT 35(12):710–713Google Scholar
  2. 2.
    Ayari I, Haton JP (1995) A framework for multi-sensor data fusion. In: Proceedings of IEEE symposium on emerging technologies and factory automation ,Vol 2, pp 51–59Google Scholar
  3. 3.
    Linn RJ, Hall DL (1991) A survey of data fusion systems. In: Proceedings of SPIE conference on data structure and target classification, pp 13–36Google Scholar
  4. 4.
    Cremer F, den Breejes E, Klamer S (1998) Sensor fusion for anti-personnel land mines detection. In: Proceedings of 3rd eurofusion conference, pp 63–70Google Scholar
  5. 5.
    Harris CJ, Bailey A, Dodd TJ (1998) Multi-sensor data fusion in defence and aerospace. Aeronaut J 102(1015):229–244Google Scholar
  6. 6.
    Bruzzone L, Fernandez D, Vernazza G. (1998) Data fusion experience: from industrial visual inspection to space remote-sensing application. In: Proceedings of academic and industrial cooperation in space research, Vienna, 4–6 November (ESA SP-432), pp:147–151Google Scholar
  7. 7.
    Nigay L, Coutaz J (1995) A Generic platform for addressing the multimodal challenge. In: Proceedings of conference on human factors in computing system. Vol 1, pp:98–105Google Scholar
  8. 8.
    Sentinella DJ, Raines AG. (1997) Real time data fusion. IEE Colloq (Digest) 55:5/1–5/3Google Scholar
  9. 9.
    Schoess J, Castore G (1988) A distributed sensor architecture for advanced aerospace systems. Proceedings of SPIE 932 Sensor Fusion pp.74–86Google Scholar
  10. 10.
    Pau LF (1990) Behavioral knowledge in sensor/data fusion systems. J Robotic Syst 7(3):295–308Google Scholar
  11. 11.
    Kelly G (1998) Data fusion: from metrology to process measurement. NPL internal report INTErSECT and summarised at [25]Google Scholar
  12. 12.
    Taylor O, MacIntyre J (1998) Adaptive local fusion systems for novelty detection and diagnostics in condition monitoring In: Proceedings of SPIE v 3376 p 210–218, ISSN:0277–786XGoogle Scholar
  13. 13.
    Thomopoulos SC (1989) Sensor integration and data fusion. In: Proceedings of SPIE 1198, Sensor fusion II: Human and machine strategies pp.178–191Google Scholar
  14. 14.
    Richardson JM, Mash K (1988) A Fusion of multisensor data. Int J Robot Res 7(6):78–96Google Scholar
  15. 15.
    Llinas J, Hall DL (1998) An introduction to multi-sensor data fusion. Proc IEEE Int Sympo Circuit Syst 6:537–540Google Scholar
  16. 16.
    Paradis S Roy J, Treurniet W (1998) Integration of all data fusion levels using a blackboard architecture.In: Proceedings of 3rd Eurofusion Conference October pp.195–202Google Scholar
  17. 17.
    Luo R, Kay M (1988) Multisensor integration and fusion: issues and approaches. SPIE Sens Fusn 931:42–49Google Scholar
  18. 18.
    Pau LF (1988) Sensor data fusion. J Int Robot Syst 1:103–116CrossRefGoogle Scholar
  19. 19.
    Bedworth M, O’Brien J (1999) The omnibus model: a new model of data fusion? In: Proceedings of the 2nd International Conference on Information Fusion SunnyvaleGoogle Scholar
  20. 20.
    Hackett JK, Shah M.(1990) Multi-sensor fusion: a perspective. IEEE CH2876-1/90:1324–1330Google Scholar
  21. 21.
    Varshney PK (1997) Multi-sensor data fusion. Electron Commun Eng J 9(6):245–253Google Scholar
  22. 22.
    Waltz EL (1998) Information understanding: integrating data fusion and data mining processes. Proc IEEE Int Symp Circuit Syst 6:553–556Google Scholar
  23. 23.
    Oxenham MG, Kewley DJ, Nelson MJ (1996) Performance assessment of data fusion systems. In: Proceedings Australian data fusion symp 1996:36–41Google Scholar
  24. 24.
    Kewley DJ. (1993) A model for evaluating data fusion systems. IEEE 1058-6393/93:273–277Google Scholar
  25. 25.
  26. 26.
    Hall DL, Garga AK (1999) Pitfalls in data fusion (and how to avoid them). In: Proceedings Eurofusion 99 Stratford on Avon UKGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2005

Authors and Affiliations

  • Jaime Esteban
    • 1
  • Andrew Starr
    • 1
  • Robert Willetts
    • 1
  • Paul Hannah
    • 1
  • Peter Bryanston-Cross
    • 2
  1. 1.School of Mechanical, Aerospace and Civil EngineeringThe University of ManchesterManchesterUK
  2. 2.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations