Advertisement

Real-world prevalence of potential drug-drug interactions involving oral antineoplastic agents: a population-based study

  • Sung Hwan Kim
  • Yewon Suh
  • Young-Mi Ah
  • Kwanghee Jun
  • Ju-Yeun LeeEmail author
Original Article

Abstract

Purpose

We aimed to gain insight into the real-world prevalence of potentially significant drug-drug interactions (DDIs) involving oral antineoplastic agents using nationwide data in Korea.

Methods

The data from the 2016 and 2017 Health Insurance Review and Assessment Service-National Patients Sample (HIRA-NPS) of South Korea were used. The drugs prescribed concomitantly with oral anticancer drugs were screened for the potential DDIs by using two international DDI databases: LexicompTM and Micromedex®. Potentially significant DDIs were defined as DDIs with a severity rating of “major” or higher from at least one reference. The DDIs were classified into category 1 if the severity ratings were major or higher using both references.

Results

Overall 5657 cases of DDIs in 2925 patients (26.4%) and 1640 cases of category 1 DDIs in 997 patients (9.0%) were identified among 11,076 patients receiving oral anticancer drugs. The prevalence was highest among the targeted agents (63.2%) followed by traditional (21.2%) and endocrine agents (19.3%). The common potential clinical consequences were increased risk of corrected QT interval prolongation (36.7%), reduced efficacy of antineoplastic agents (30.4%), and increased toxicities of antineoplastic agents (8.0%). Polypharmacy and the duration of oral cancer treatment increased the likelihood of potential DDIs in addition to individual antineoplastic agents.

Conclusions

This study showed that potentially significant DDIs with oral antineoplastic agents were prevalent in real-world practice. Recognizing the high prevalence of DDIs among patients taking oral antineoplastic agents is a necessary step toward improving the clinical outcome.

Keywords

Oral antineoplastic agents Drug interaction QTc prolongation Polypharmacy 

Notes

Funding information

This work was supported by Research Resettlement Fund for the new faculty of Seoul National University.

Compliance with ethical standards

The protocol of this study was approved by the Seoul National University institutional review board (SNU 18-09-055).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

520_2019_5204_MOESM1_ESM.pdf (350 kb)
ESM 1 (PDF 349 kb).

References

  1. 1.
    Scripture CD, Figg WD (2006) Drug interactions in cancer therapy. Nat Rev Cancer 6(7):546–558.  https://doi.org/10.1038/nrc1887 CrossRefPubMedGoogle Scholar
  2. 2.
    Sun J, Wei Q, Zhou Y, Wang J, Liu Q, Xu H (2017) A systematic analysis of FDA-approved anticancer drugs. BMC Syst Biol 11(Suppl 5):87.  https://doi.org/10.1186/s12918-017-0464-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sharma M, Vadhariya A, Chikermane S, Gopinathan S, Chavez-MacGregor M, Giordano SH, Johnson ML, Holmes HM (2019) Clinical outcomes associated with drug-drug interactions of oral chemotherapeutic agents: a comprehensive evidence-based literature review. Drugs Aging 36(4):341–354.  https://doi.org/10.1007/s40266-019-00640-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Herbrink M, Nuijen B, Schellens JH, Beijnen JH (2015) Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev 41(5):412–422.  https://doi.org/10.1016/j.ctrv.2015.03.005 CrossRefPubMedGoogle Scholar
  5. 5.
    Rogala BG, Charpentier MM, Nguyen MK, Landolf KM, Hamad L, Gaertner KM (2019) Oral anticancer therapy: Management of drug interactions. J Oncol Pract 15(2):81–90.  https://doi.org/10.1200/JOP.18.00483 CrossRefGoogle Scholar
  6. 6.
    Riechelmann RP, Tannock IF, Wang L, Saad ED, Taback NA, Krzyzanowska MK (2007) Potential drug interactions and duplicate prescriptions among cancer patients. J Natl Cancer Inst 99(8):592–600.  https://doi.org/10.1093/jnci/djk130 CrossRefPubMedGoogle Scholar
  7. 7.
    Vecchia S, Orlandi E, Confalonieri C, Damonti E, Riva A, Sartori A, Cavanna L (2018) Prevalence study on potential drug-drug interaction in cancer patients in Piacenza hospital’s Onco-Haematology department. J Oncol Pharm Pract 24(7):490–493.  https://doi.org/10.1177/1078155217717324 CrossRefPubMedGoogle Scholar
  8. 8.
    Ko Y, Tan S-LD, Chan A, Wong Y-P, Yong W-P, Ng RC-H, Lim S-W, Salim A (2012) Prevalence of the coprescription of clinically important interacting drug combinations involving oral anticancer agents in Singapore: a retrospective database study. Clin Ther 34(8):1696–1704.  https://doi.org/10.1016/j.clinthera.2012.06.025 CrossRefPubMedGoogle Scholar
  9. 9.
    Andersson ML, Bottiger Y, Kockum H, Eiermann B (2018) High prevalence of drug-drug interactions in primary health care is caused by prescriptions from other healthcare units. Basic Clin Pharmacol Toxicol 122(5):512–516.  https://doi.org/10.1111/bcpt.12939 CrossRefPubMedGoogle Scholar
  10. 10.
    Benoist GE, van Oort IM, Smeenk S, Javad A, Somford DM, Burger DM, Mehra N, van Erp NP (2018) Drug-drug interaction potential in men treated with enzalutamide: Mind the gap. Br J Clin Pharmacol 84(1):122–129.  https://doi.org/10.1111/bcp.13425 CrossRefPubMedGoogle Scholar
  11. 11.
    Armahizer MJ, Kane-Gill SL, Smithburger PL, Anthes AM, Seybert AL (2013) Comparing drug-drug interaction severity ratings between bedside clinicians and proprietary databases. ISRN Crit Care 2013:1–6.  https://doi.org/10.5402/2013/347346 CrossRefGoogle Scholar
  12. 12.
    Solomon JM, Ajewole VB, Schneider AM, Sharma M, Bernicker EH (2018) Evaluation of the prescribing patterns, adverse effects, and drug interactions of oral chemotherapy agents in an outpatient cancer center. J Oncol Pharm Pract.  https://doi.org/10.1177/1078155218798150 CrossRefGoogle Scholar
  13. 13.
    van Leeuwen RW, Brundel DH, Neef C, van Gelder T, Mathijssen RH, Burger DM, Jansman FG (2013) Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs. Br J Cancer 108(5):1071–1078.  https://doi.org/10.1038/bjc.2013.48 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gustafson E, Kettle J (2015) Analyzing trends in oral anticancer agents in an academic medical facility. J Hematol Oncol Pharm 5:34–37Google Scholar
  15. 15.
    Porta-Sanchez A, Gilbert C, Spears D, Amir E, Chan J, Nanthakumar K, Thavendiranathan P (2017) Incidence, diagnosis, and management of qt prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc 6(12).  https://doi.org/10.1161/jaha.117.007724
  16. 16.
    Keller KL, Franquiz MJ, Duffy AP, Trovato JA (2018) Drug-drug interactions in patients receiving tyrosine kinase inhibitors. J Oncol Pharm Pract 24(2):110–115.  https://doi.org/10.1177/1078155216682311 CrossRefPubMedGoogle Scholar
  17. 17.
    van Leeuwen RW, van Gelder T, Mathijssen RH, Jansman FG (2014) Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15(8):e315–e326.  https://doi.org/10.1016/s1470-2045(13)70579-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Colzani E, Clements M, Johansson AL, Liljegren A, He W, Brand J, Adolfsson J, Fornander T, Hall P, Czene K (2016) Risk of hospitalisation and death due to bone fractures after breast cancer: a registry-based cohort study. Br J Cancer 115(11):1400–1407.  https://doi.org/10.1038/bjc.2016.314 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Suzuki K, Doki K, Homma M, Tamaki H, Hori S, Ohtani H, Sawada Y, Kohda Y (2009) Co-administration of proton pump inhibitors delays elimination of plasma methotrexate in high-dose methotrexate therapy. Br J Clin Pharmacol 67(1):44–49.  https://doi.org/10.1111/j.1365-2125.2008.03303.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chan AJ, Rajakumar I (2014) High-dose methotrexate in adult oncology patients: a case-control study assessing the risk association between drug interactions and methotrexate toxicity. J Oncol Pharm Pract 20(2):93–99.  https://doi.org/10.1177/1078155213482602 CrossRefPubMedGoogle Scholar
  21. 21.
    Shetty V, Chowta MN, Chowta KN, Shenoy A, Kamath A, Kamath P (2018) Evaluation of potential drug-drug interactions with medications prescribed to geriatric patients in a tertiary care hospital. J Aging Res 2018:5728957.  https://doi.org/10.1155/2018/5728957 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang W, Xiao B, Liu Z, Wang D, Zhu M (2019) The prevalence of the potential drug-drug interactions involving anticancer drugs in china: a retrospective study. Iran J Public Health 48(3):435–443PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of PharmacySeoul National University HospitalSeoulRepublic of Korea
  3. 3.Department of PharmacySeoul National University Bundang HospitalSeongnamsiRepublic of Korea
  4. 4.College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations