Advertisement

Supportive Care in Cancer

, Volume 28, Issue 2, pp 867–876 | Cite as

Comparison of photobiomodulation using either an intraoral or an extraoral laser on oral mucositis induced by chemotherapy in rats

  • Stéfanie Thieme
  • Julia Turra Ribeiro
  • Bernardo Gindri dos Santos
  • Renata de Almeida Zieger
  • Mara Luana Batista Severo
  • Marco Antonio Trevizani Martins
  • Cristiane Matté
  • Manoela Domingues MartinsEmail author
Original Article
  • 157 Downloads

Abstract

Purpose

The aim of the present study was to compare the effect of intraoral (IO) and extraoral (EO) diode laser irradiation on oral mucositis (OM) induced by 5-fluorouracil (5-FU) in rats.

Methods

Animals (n = 78) were divided into the following groups: negative control (NC), positive control (PC), IO 6 J/cm2, EO with 6 J/cm2 (EO 6 J/cm2), and 12 J/cm2 (EO 12 J/cm2). OM was induced with an intraperitoneal injection of 5-FU and scarification of the buccal mucosa. Over the following 14 days, animals received photobiomodulation (PBM) daily. Clinical and histological evaluation was done by scores at days 8, 10, and 14. The redox state was evaluated by reactive species levels, antioxidant network, and immunohistochemistry analysis.

Results

Clinically, on day 8, PBM groups showed lower scores of OM with EO 6 J/cm2 presenting a significantly lower degree compared to PC (p < 0.05). On days 10 and 14, all PBM groups exhibited improvement of OM compared to PC (p < 0.01). On day 8, all PBM groups exhibited an accelerated healing process compared to PC (p < 0.01) and reduction of reactive species (p < 0.001). Also, all PBM groups demonstrated higher levels of antioxidant GPx compared to PC (p < 0.001). Analysis of nitrotyrosine revealed that on day 14, this protein damage marker was significantly reduced in the EO 6 J/cm2 group (p > 0.05).

Conclusions

An EO diode laser protocol promoted positive effects in the clinical, histopathological, and redox state in OM induced by 5-FU in rats. Among the EO protocols, EO 6 J/cm2 showed the most encouraging results.

Keywords

Diode lasers Oral mucositis Low-level laser therapy Oxidative stress 

Notes

Acknowledgments

The authors are grateful to Marta Justina Giotti Cioato and Flavia Rejane Giusti for technical support.

Funding information

This study was funded by the Postgraduate Research Group of Porto Alegre Clinics Hospital (GPPG/FIPE: 2018-0096) and Azena Medical (providing laser equipment and research funding). We also thank Brazilian National Council for Scientific and Technological Development (CNPq student scholarship), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-finance code 001. Cristiane Matté and Manoela Domingues Martins are research fellows funded by the Brazilian National Council for Scientific and Technological Development (CNPq).

Compliance with ethical standards

This study was approved by the Ethics Committee on Animal Use (CEUA, 2018-0096).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sonis ST, Villa A (2018) Phase II investigational oral drugs for the treatment of radio/chemotherapy induced oral mucositis. Expert Opin Investig Drugs 27:147–154.  https://doi.org/10.1080/13543784.2018.1427732 CrossRefPubMedGoogle Scholar
  2. 2.
    Cinausero M, Aprile G, Ermacora P, Basile D, Vitale MG, Fanotto V, Parisi G, Calvetti L, Sonis ST (2017) New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front Pharmacol 8:1–16.  https://doi.org/10.3389/fphar.2017.00354 CrossRefGoogle Scholar
  3. 3.
    Lalla RV, Saunders DP, Peterson DE (2014) Chemotherapy or radiation-induced oral mucositis. Dent Clin N Am 58:341–349.  https://doi.org/10.1016/j.cden.2013.12.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Villa A, Sonis ST (2015) Mucositis: pathobiology and management. Curr Opin Oncol 27:159–164.  https://doi.org/10.1097/CCO.0000000000000180 CrossRefPubMedGoogle Scholar
  5. 5.
    Sonis ST (2007) Pathobiology of oral mucositis: novel insights and opportunities. J Support Oncol 5:3–11PubMedGoogle Scholar
  6. 6.
    Al-Dasooqi N, Sonis ST, Bowen JM et al (2013) Emerging evidence on the pathobiology of mucositis. Support Care Cancer 21:3233–3241.  https://doi.org/10.1007/s00520-013-1900-x CrossRefPubMedGoogle Scholar
  7. 7.
    Lalla RV, Bowen J, Barasch A, Elting L, Epstein J, Keefe DM, McGuire DB, Migliorati C, Nicolatou-Galitis O, Peterson DE, Raber-Durlacher JE, Sonis ST, Elad S, The Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) (2014) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 120:1453–1461.  https://doi.org/10.1002/cncr.28592 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184.  https://doi.org/10.1089/pho.2015.9848 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4:337–361.  https://doi.org/10.3934/biophy.2017.3.337.Mechanisms CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang Y, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy – an update. Int Dose-Response Soc 9:602–618.  https://doi.org/10.2203/dose-response.11-009.Hamblin CrossRefGoogle Scholar
  11. 11.
    George S, Hamblin MR, Abrahamse H (2018) Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts. J Photochem Photobiol B Biol 188:60–68.  https://doi.org/10.1016/j.jphotobiol.2018.09.004 CrossRefGoogle Scholar
  12. 12.
    Cotomacio CC, Campos L, de Souza DN et al (2017) Dosimetric study of photobiomodulation therapy in 5-FU- induced oral mucositis in hamsters in 5-FU-induced oral mucositis in hamsters. J Biomed Opt 22:018003.  https://doi.org/10.1117/1.JBO.22.1.018003 CrossRefGoogle Scholar
  13. 13.
    Guedes CDCFV, De Freitas Filho SAJ, De Faria PR et al (2018) Variation of energy in photobiomodulation for the control of radiotherapy-induced oral mucositis: a clinical study in head and neck cancer patients. Int J Dent 2018:1–6.  https://doi.org/10.1155/2018/4579279 CrossRefGoogle Scholar
  14. 14.
    Salvador DRN, Soave DF, Sacono NT, de Castro EF, Silva GBL, e Silva LP, Silva TA, Valadares MC, Mendonça EF, Batista AC (2017) Effect of photobiomodulation therapy on reducing the chemo-induced oral mucositis severity and on salivary levels of CXCL8/interleukin 8, nitrite, and myeloperoxidase in patients undergoing hematopoietic stem cell transplantation: a randomized clinical tr. Lasers Med Sci 32:1801–1810.  https://doi.org/10.1007/s10103-017-2263-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DMJ, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805.  https://doi.org/10.1007/s00520-016-3153-y CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zecha JAEM, Raber-durlacher JE, Nair RG et al (2017) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 24:2781–2792.  https://doi.org/10.1007/s00520-016-3152-z.Low CrossRefGoogle Scholar
  17. 17.
    Treister NS, London WB, Guo D, Malsch M, Verrill K, Brewer J, Margossian S, Duncan C (2016) A feasibility study evaluating extraoral photobiomodulation therapy for prevention of mucositis in pediatric hematopoietic cell transplantation. Photomed Laser Surg 34:178–184.  https://doi.org/10.1089/pho.2015.4021 CrossRefPubMedGoogle Scholar
  18. 18.
    He M, Zhang B, Shen N, Wu N, Sun J (2018) A systematic review and meta-analysis of the effect of low-level laser therapy (LLLT) on chemotherapy-induced oral mucositis in pediatric and young patients. Eur J Pediatr 177:7–17.  https://doi.org/10.1007/s00431-017-3043-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Hodgson BD, Margolis DM, Salzman DE, Eastwood D, Tarima S, Williams LD, Sande JE, Vaughan WP, Whelan HT (2012) Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 20:1405–1415.  https://doi.org/10.1007/s00520-011-1223-8 CrossRefPubMedGoogle Scholar
  20. 20.
    Soto M, Lalla RV, Gouveia RV, Zecchin VG, Seber A, Lopes NNF (2015) Pilot study on the efficacy of combined intraoral and extraoral low-level laser therapy for prevention of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation. Photomed Laser Surg 33:540–546.  https://doi.org/10.1089/pho.2015.3954 CrossRefPubMedGoogle Scholar
  21. 21.
    Curra M, Pellicioli ACA, Filho NAK, Ochs G, Matte Ú, Filho MS’A, Martins MAT, Martins MD (2015) Photobiomodulation reduces oral mucositis by modulating NF-kB. J Biomed Opt 20(12):125008.  https://doi.org/10.1117/1.JBO.20.12.125008 CrossRefPubMedGoogle Scholar
  22. 22.
    Weissheimer C, Curra M, Gregianin LJ, Daudt LE, Wagner VP, Martins MAT, Martins MD (2017) New photobiomodulation protocol prevents oral mucositis in hematopoietic stem cell transplantation recipients—a retrospective study. Lasers Med Sci 32:2013–2021.  https://doi.org/10.1007/s10103-017-2314-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Lima V, Brito GAC, Cunha FQ, Reboucas CG, Falcao BAA, Augusto RF, Souza MLP, Leitao BT, Ribeiro RA (2005) Effects of the tumour necrosis factor- a inhibitors pentoxifylline and thalidomide in short-term experimental oral mucositis in hamsters. Eur J Oral Sci 113:210–217.  https://doi.org/10.1111/j.1600-0722.2005.00216.x CrossRefPubMedGoogle Scholar
  24. 24.
    Detre S, Jotti GS, Dowsett M (1995) A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 48:876–878CrossRefGoogle Scholar
  25. 25.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231.  https://doi.org/10.1021/tx00026a012 CrossRefPubMedGoogle Scholar
  26. 26.
    Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. In: Methods in molecular biology - free radical and antioxidant protocols, pp 347–352CrossRefGoogle Scholar
  27. 27.
    Wendel A (1981) Glutathione peroxidase. In: Methods Enzymology. pp 325–333Google Scholar
  28. 28.
    Barbosa KBF, Costa NMB, Alfenas R de CG et al (2010) Oxidative stress: concept, implications and modulating factors. Rev Nutr 23:629–643.  https://doi.org/10.1590/S1415-52732010000400013 CrossRefGoogle Scholar
  29. 29.
    Campos L, Cruz ÉP, Pereira FS, Arana-Chavez VE, Simões A (2016) Comparative study among three different phototherapy protocols to treat chemotherapy-induced oral mucositis in hamsters. J Biophotonics 9:1236–1245.  https://doi.org/10.1002/jbio.201600014 CrossRefPubMedGoogle Scholar
  30. 30.
    Lopes NNF, Plapler H, Chavantes MC, Lalla RV, Yoshimura EM, Alves MTS (2009) Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters : evaluation of two low-intensity laser protocols. Support Care Cancer 17:1409–1415.  https://doi.org/10.1007/s00520-009-0603-9 CrossRefPubMedGoogle Scholar
  31. 31.
    Ottaviani G, Gobbo M, Sturnega M, Martinelli V, Mano M, Zanconati F, Bussani R, Perinetti G, Long CS, di Lenarda R, Giacca M, Biasotto M, Zacchigna S (2013) Effect of class IV laser therapy on chemotherapy-induced Oral mucositis - - a clinical and experimental study. Am J Pathol 183:1747–1757.  https://doi.org/10.1016/j.ajpath.2013.09.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Gobbo M, Verzegnassi F, Ronfani L, Zanon D, Melchionda F, Bagattoni S, Majorana A, Bardellini E, Mura R, Piras A, Petris MG, Mariuzzi ML, Barone A, Merigo E, Decembrino N, Vitale MC, Berger M, Defabianis P, Biasotto M, Ottaviani G, Zanazzo GA (2018) Multicenter randomized , double-blind controlled trial to evaluate the efficacy of laser therapy for the treatment of severe oral mucositis induced by chemotherapy in children : laMPO RCT. Pediatr Blood Cancer 65:1–8.  https://doi.org/10.1002/pbc.27098 CrossRefGoogle Scholar
  33. 33.
    Lopes NNF, Plapler H, Lalla RV, Chavantes MC, Yoshimura EM, da Silva MAB, Alves MTS (2010) Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters. Lasers Surg Med 42:546–552.  https://doi.org/10.1002/lsm.20920 CrossRefPubMedGoogle Scholar
  34. 34.
    França CM, França CM, Núñez SC, Prates RA, Noborikawa E, Faria MR, Ribeiro MS (2009) Low-intensity red laser on the prevention and treatment of induced-oral mucositis in hamsters. J Photochem Photobiol B Biol 94:25–31.  https://doi.org/10.1016/j.jphotobiol.2008.09.006 CrossRefGoogle Scholar
  35. 35.
    Elad S, Arany P, Bensadoun RJ, Epstein JB, Barasch A, Raber-Durlacher J (2018) Photobiomodulation therapy in the management of oral mucositis: search for the optimal clinical treatment parameters. Support Care Cancer 26:3319–3321.  https://doi.org/10.1007/s00520-018-4262-6 CrossRefPubMedGoogle Scholar
  36. 36.
    Shankar A, Roy S, Bhandari M, Rath GK, Biswas AS, Kanodia R, Adhikari N, Sachan R (2019) Current trends in management of oral mucositis in cancer treatment. Asian Pac J Cancer Prev 18:2019–2026.  https://doi.org/10.22034/APJCP.2017.18.8.2019 CrossRefGoogle Scholar
  37. 37.
    Yoshino F, Yoshida A, Nakajima A, Wada-Takahashi S, Takahashi SS, Lee MCI (2013) Alteration of the redox state with reactive oxygen species for 5-fluorouracil-induced oral mucositis in hamsters. PLoS One 8:10–15.  https://doi.org/10.1371/journal.pone.0082834 CrossRefGoogle Scholar
  38. 38.
    Migliario M, Sabbatini M, Mortellaro C, Renò F (2018) Near infrared low level laser therapy and cell proliferation: the emerging role of redox sensitive signal transduction pathways. J Biophotonics 11:e201800025.  https://doi.org/10.1002/jbio.201800025 CrossRefPubMedGoogle Scholar
  39. 39.
    Dillenburg CS, Almeida LO, Martins MD, Squarize CH, Castilho RM (2014) Laser phototherapy triggers the production of reactive oxygen species in oral epithelial cells without inducing DNA damage. J Biomed Opt 19:048002.  https://doi.org/10.1117/1.JBO.19.4.048002 CrossRefPubMedGoogle Scholar
  40. 40.
    Pellicioli ACA, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM (2014) Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt 19:28002.  https://doi.org/10.1117/1.JBO.19.2.028002 CrossRefGoogle Scholar
  41. 41.
    Rupel K, Zupin L, Colliva A, Kamada A, Poropat A, Ottaviani G, Gobbo M, Fanfoni L, Gratton R, Santoro M, di Lenarda R, Biasotto M, Zacchigna S (2018) Photobiomodulation at multiple wavelengths differentially modulates oxidative stress in vitro and in vivo. Oxidative Med Cell Longev 2018:1–11.  https://doi.org/10.1155/2018/6510159 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stéfanie Thieme
    • 1
  • Julia Turra Ribeiro
    • 1
  • Bernardo Gindri dos Santos
    • 2
  • Renata de Almeida Zieger
    • 1
  • Mara Luana Batista Severo
    • 1
  • Marco Antonio Trevizani Martins
    • 1
    • 3
  • Cristiane Matté
    • 2
    • 4
  • Manoela Domingues Martins
    • 1
    • 3
    • 5
    • 6
    Email author
  1. 1.Department of Oral Pathology, School of DentistryFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Postgraduate Program in Biological Sciences: Biochemistry, ICBSFederal University of Rio Grande do SulPorto AlegreBrazil
  3. 3.Department of Oral MedicinePorto Alegre Clinics Hospital (HCPA/UFRGS)Porto AlegreBrazil
  4. 4.Postgraduate Program in Biological Sciences: Physiology, ICBSFederal University of Rio Grande do SulPorto AlegreBrazil
  5. 5.Experimental Pathology Unit, Porto Alegre Clinics HospitalFederal University of Rio Grande do SulPorto AlegreBrazil
  6. 6.Faculdade de OdontologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations