Advertisement

Supportive Care in Cancer

, Volume 28, Issue 2, pp 779–786 | Cite as

Usefulness of Kinect sensor–based reachable workspace system for assessing upper extremity dysfunction in breast cancer patients

  • Kyeong Eun Uhm
  • Seunghwan Lee
  • Gregorij Kurillo
  • Jay J. Han
  • Jung-Hyun Yang
  • Young Bum Yoo
  • Jongmin LeeEmail author
Original Article
  • 148 Downloads

Abstract

Purpose

Recently, the utility of the Kinect sensor–based reachable workspace analysis system for measuring upper extremity outcomes of neuromuscular and musculoskeletal diseases has been demonstrated. Here, we investigated its usefulness for assessing upper extremity dysfunction in breast cancer patients.

Methods

Twenty unilateral breast cancer patients were enrolled. Upper extremity active range of motion was captured by the Kinect sensor, and reachable workspace relative surface areas (RSAs) were obtained. The QuickDASH was completed to assess upper extremity disability. General and breast cancer–specific quality of life (QOL) were assessed by the EORTC QLQ-C30 and EORTC QLQ-BR23.

Results

The total RSA ratio of the affected and unaffected sides ranges from 0.64 to 1.11. Total RSA was significantly reduced on the affected versus unaffected side (0.659 ± 0.105 vs. 0.762 ± 0.065; p = 0.001). Quadrant 1 and 3 RSAs were significantly reduced (0.135 ± 0.039 vs. 0.183 ± 0.040, p < 0.001; 0.172 ± 0.058 vs. 0.217 ± 0.031, p = 0.006). Total RSA of the affected side was strongly correlated with the numeric pain rating scale during movement (r = − 0.812, p < 0.001) and moderately with the QuickDASH (r = − 0.494, p = 0.027). Further, quadrant 3 RSA was correlated with EORTC QLQ-C30 role functioning (r = 0.576, p = 0.008) and EORTC QLQ-BR23 arm symptoms (r = − 0.588, p = 0.006) scales.

Conclusions

The Kinect sensor–based reachable workspace analysis system was effectively applied to assess upper extremity dysfunction in breast cancer patients. This system could potentially serve as a quick and simple outcome measure that provides quantitative data for breast cancer patients.

Keywords

Kinect Reachable workspace Upper extremity Disability Breast cancer 

Notes

Compliance with ethical standards

The study protocol was approved by the Institutional Review Board of Konkuk University Medical Center.

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Stewart BW, Wild CP (2014) World Cancer Report 2014, LyonGoogle Scholar
  2. 2.
    Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JD, Feuer EJ (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353(17):1784–1792.  https://doi.org/10.1056/NEJMoa050518 CrossRefPubMedGoogle Scholar
  3. 3.
    DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A (2017) Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin 67(6):439–448.  https://doi.org/10.3322/caac.21412 CrossRefPubMedGoogle Scholar
  4. 4.
    Smoot B, Wong J, Cooper B, Wanek L, Topp K, Byl N, Dodd M (2010) Upper extremity impairments in women with or without lymphedema following breast cancer treatment. J Cancer Surviv 4(2):167–178.  https://doi.org/10.1007/s11764-010-0118-x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kibar S, Dalyan Aras M, Unsal Delialioglu S (2017) The risk factors and prevalence of upper extremity impairments and an analysis of effects of lymphoedema and other impairments on the quality of life of breast cancer patients. Eur J Cancer Care 26(4).  https://doi.org/10.1111/ecc.12433 CrossRefGoogle Scholar
  6. 6.
    McNeely ML, Binkley JM, Pusic AL, Campbell KL, Gabram S, Soballe PW (2012) A prospective model of care for breast cancer rehabilitation: postoperative and postreconstructive issues. Cancer 118(8 Suppl):2226–2236.  https://doi.org/10.1002/cncr.27468 CrossRefPubMedGoogle Scholar
  7. 7.
    Lee TS, Kilbreath SL, Refshauge KM, Herbert RD, Beith JM (2008) Prognosis of the upper limb following surgery and radiation for breast cancer. Breast Cancer Res Treat 110(1):19–37.  https://doi.org/10.1007/s10549-007-9710-9 CrossRefPubMedGoogle Scholar
  8. 8.
    Kootstra JJ, Dijkstra PU, Rietman H, de Vries J, Baas P, Geertzen JH, Hoekstra HJ, Hoekstra-Weebers JE (2013) A longitudinal study of shoulder and arm morbidity in breast cancer survivors 7 years after sentinel lymph node biopsy or axillary lymph node dissection. Breast Cancer Res Treat 139(1):125–134.  https://doi.org/10.1007/s10549-013-2509-y CrossRefPubMedGoogle Scholar
  9. 9.
    Sclafani LM, Baron RH (2008) Sentinel lymph node biopsy and axillary dissection: added morbidity of the arm, shoulder and chest wall after mastectomy and reconstruction. Cancer J 14(4):216–222.  https://doi.org/10.1097/PPO.0b013e31817fbe5e CrossRefPubMedGoogle Scholar
  10. 10.
    Kurillo G, Han JJ, Obdrzalek S, Yan P, Abresch RT, Nicorici A, Bajcsy R (2013) Upper extremity reachable workspace evaluation with Kinect. Stud Health Technol Inform 184:247–253PubMedGoogle Scholar
  11. 11.
    Gajdosik RL, Bohannon RW (1987) Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther 67(12):1867–1872CrossRefGoogle Scholar
  12. 12.
    Mullaney MJ, McHugh MP, Johnson CP, Tyler TF (2010) Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother Theory Pract 26(5):327–333.  https://doi.org/10.3109/09593980903094230 CrossRefPubMedGoogle Scholar
  13. 13.
    Kurillo G, Chen A, Bajcsy R, Han JJ (2013) Evaluation of upper extremity reachable workspace using Kinect camera. Technol Health Care 21(6):641–656.  https://doi.org/10.3233/thc-130764 CrossRefPubMedGoogle Scholar
  14. 14.
    Han JJ, Kurillo G, Abresch RT, Nicorici A, Bajcsy R (2013) Validity, reliability, and sensitivity of a 3D vision sensor-based upper extremity reachable workspace evaluation in neuromuscular diseases. PLoS Curr 5.  https://doi.org/10.1371/currents.md.f63ae7dde63caa718fa0770217c5a0e6
  15. 15.
    Han JJ, Kurillo G, Abresch RT, de Bie E, Nicorici A, Bajcsy R (2015) Reachable workspace in facioscapulohumeral muscular dystrophy (FSHD) by Kinect. Muscle Nerve 51(2):168–175.  https://doi.org/10.1002/mus.24287 CrossRefPubMedGoogle Scholar
  16. 16.
    Han JJ, Kurillo G, Abresch RT, De Bie E, Nicorici A, Bajcsy R (2015) Upper extremity 3-dimensional reachable workspace analysis in dystrophinopathy using Kinect. Muscle Nerve 52(3):344–355.  https://doi.org/10.1002/mus.24567 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Han JJ, De Bie E, Nicorici A, Abresch RT, Bajcsy R, Kurillo G (2015) Reachable workspace reflects dynamometer-measured upper extremity strength in facioscapulohumeral muscular dystrophy. Muscle Nerve 52(6):948–955.  https://doi.org/10.1002/mus.24651 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oskarsson B, Joyce NC, De Bie E, Nicorici A, Bajcsy R, Kurillo G, Han JJ (2016) Upper extremity 3-dimensional reachable workspace assessment in amyotrophic lateral sclerosis by Kinect sensor. Muscle Nerve 53(2):234–241.  https://doi.org/10.1002/mus.24703 CrossRefPubMedGoogle Scholar
  19. 19.
    Han JJ, de Bie E, Nicorici A, Abresch RT, Anthonisen C, Bajcsy R, Kurillo G, McDonald CM (2016) Reachable workspace and performance of upper limb (PUL) in duchenne muscular dystrophy. Muscle Nerve 53(4):545–554.  https://doi.org/10.1002/mus.24894 CrossRefPubMedGoogle Scholar
  20. 20.
    de Bie E, Oskarsson B, Joyce NC, Nicorici A, Kurillo G, Han JJ (2016) Longitudinal evaluation of upper extremity reachable workspace in ALS by Kinect sensor. Amyotroph Lateral Scler Frontotemporal Degener 18:17–23.  https://doi.org/10.1080/21678421.2016.1241278 CrossRefPubMedGoogle Scholar
  21. 21.
    Reddy DB, Humbert SE, Yu K, Aguilar CJ, de Bie E, Nicorici A, Kurillo G, JJ H (2015) Novel Kinect-based method to assess 3D reachable workspace in musculoskeletal shoulder dysfunctions: case reports. Int J Phys Med Rehabil 3:274.  https://doi.org/10.4172/2329-9096.1000274 CrossRefGoogle Scholar
  22. 22.
    Guan Y, Yokoi K (2006) Reachable space generation of a humanoid robot using the Monte Carlo method. 2006 IEEE/RSJ Int Conf Intell Robot Sys Beijing. 2006:1984–1989.  https://doi.org/10.1109/IROS.2006.282406
  23. 23.
    LeBlanc M, Stineman M, DeMichele A, Stricker C, Mao JJ (2014) Validation of QuickDASH outcome measure in breast cancer survivors for upper extremity disability. Arch Phys Med Rehabil 95(3):493–498.  https://doi.org/10.1016/j.apmr.2013.09.016 CrossRefPubMedGoogle Scholar
  24. 24.
    Beaton DE, Wright JG, Katz JN (2005) Development of the QuickDASH: comparison of three item-reduction approaches. J Bone Joint Surg Am 87(5):1038–1046.  https://doi.org/10.2106/jbjs.D.02060 CrossRefPubMedGoogle Scholar
  25. 25.
    EORTC. EORTC QOL Questionnaires. https://qol.eortc.org/questionnaires/. Accessed 12 Mar 2019
  26. 26.
    Macedo LG, Magee DJ (2008) Differences in range of motion between dominant and nondominant sides of upper and lower extremities. J Manip Physiol Ther 31(8):577–582.  https://doi.org/10.1016/j.jmpt.2008.09.003 CrossRefGoogle Scholar
  27. 27.
    Mousavi Hondori H, Khademi M (2014) A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. J Med Eng 2014:846514.  https://doi.org/10.1155/2014/846514 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gritsenko V, Dailey E, Kyle N, Taylor M, Whittacre S, Swisher AK (2015) Feasibility of using low-cost motion capture for automated screening of shoulder motion limitation after breast cancer surgery. PLoS One 10(6):e0128809.  https://doi.org/10.1371/journal.pone.0128809 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moreira R, Magalhães A, Oliveira HP (2015) A Kinect-based system to assess lymphedema impairments in breast cancer patients. Pattern Recognition and Image Analysis. IbPRIA 2015. Lect Notes Comput Sci 9117:228–236.  https://doi.org/10.1007/978-3-319-19390-8_26 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Rehabilitation MedicineKonkuk University School of MedicineSeoulSouth Korea
  2. 2.Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of Physical Medicine and Rehabilitation, School of MedicineUniversity of California at IrvineOrangeUSA
  4. 4.Department of Surgery, Konkuk University Medical CenterKonkuk University School of MedicineSeoulSouth Korea
  5. 5.Research Institute of Medical ScienceKonkuk University School of MedicineSeoulSouth Korea

Personalised recommendations