Prognostication in advanced cancer: update and directions for future research

  • David HuiEmail author
  • Carlos Eduardo Paiva
  • Egidio G. Del Fabbro
  • Christopher Steer
  • Jane Naberhuis
  • Marianne van de Wetering
  • Paz Fernández-Ortega
  • Tatsuya Morita
  • Sang-Yeon Suh
  • Eduardo Bruera
  • Masanori Mori
Review Article


The objective of this review is to provide an update on prognostication in patients with advanced cancer and to discuss future directions for research in this field. Accurate prognostication of survival for patients with advanced cancer is vital, as patient life expectancy informs many important personal and clinical decisions. The most common prognostic approach is clinician prediction of survival (CPS) using temporal, surprise, or probabilistic questions. The surprise and probabilistic questions may be more accurate than the temporal approach, partly by limiting the time frame of prediction. Prognostic models such as the Glasgow Prognostic Score (GPS), Palliative Performance Scale (PPS), Palliative Prognostic Score (PaP), Palliative Prognostic Index (PPI), or Prognosis in Palliative Care Study (PiPS) predictor model may augment CPS. However, care must be taken to select the appropriate tool since prognostic accuracy varies by patient population, setting, and time frame of prediction. In addition to life expectancy, patients and caregivers often desire that expected treatment outcomes and bodily changes be communicated to them in a sensible manner at an appropriate time. We propose the following 10 major themes for future prognostication research: (1) enhancing prognostic accuracy, (2) improving reliability and reproducibility of prognosis, (3) identifying the appropriate prognostic tool for a given setting, (4) predicting the risks and benefits of cancer therapies, (5) predicting survival for pediatric populations, (6) translating prognostic knowledge into practice, (7) understanding the impact of prognostic uncertainty, (8) communicating prognosis, (9) clarifying outcomes associated with delivery of prognostic information, and (10) standardizing prognostic terminology.


Prognostication Cancer Survival Clinical decision-making 


Funding information

Dr. Hui was supported in part by National Institutes of Health grants (1R01CA214960-01A1; R21NR016736-01) and an American Cancer Society Mentored Research Scholar Grant in Applied and Clinical Research (MRSG-14-1418-01-CCE).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest. Parts of this manuscript were presented at the 2018 Multinational Association for Supportive Care in Cancer Annual Meeting. The authors have full control of all primary data, and grant permission for the journal to review this data, if requested.

Supplementary material

520_2019_4727_MOESM1_ESM.docx (38 kb)
ESM 1 (DOCX 38 kb)


  1. 1.
    Glare PA, Sinclair CT (2008) Palliative medicine review: prognostication. J Palliat Med 11(1):84–103. Google Scholar
  2. 2.
    Hui D (2015) Prognostication of survival in patients with advanced cancer: predicting the unpredictable? Cancer Control 22(4):489–497. Google Scholar
  3. 3.
    Han PK, Dieckmann NF, Holt C, Gutheil C, Peters E (2016) Factors affecting physicians' intentions to communicate personalized prognostic information to cancer patients at the end of life: an experimental vignette study. Med Decis Making 36(6):703–713. Google Scholar
  4. 4.
    Temel JS, Greer JA, Muzikansky A, Gallagher ER, Admane S, Jackson VA, Dahlin CM, Blinderman CD, Jacobsen J, Pirl WF, Billings JA, Lynch TJ (2010) Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 363(8):733–742. Google Scholar
  5. 5.
    Weeks JC, Cook EF, O'Day SJ, Peterson LM, Wenger N, Reding D, Harrell FE, Kussin P, Dawson NV, Connors AF Jr, Lynn J, Phillips RS (1998) Relationship between cancer patients' predictions of prognosis and their treatment preferences. Jama 279(21):1709–1714Google Scholar
  6. 6.
    Maltoni M, Caraceni A, Brunelli C, Broeckaert B, Christakis N, Eychmueller S, Glare P, Nabal M, Vigano A, Larkin P, De Conno F, Hanks G, Kaasa S (2005) Prognostic factors in advanced cancer patients: evidence-based clinical recommendations--a study by the Steering Committee of the European Association for Palliative Care. J Clin Oncol 23(25):6240–6248. Google Scholar
  7. 7.
    Parkes CM (1972) Accuracy of predictions of survival in later stages of cancer. Br Med J 2(5804):29–31Google Scholar
  8. 8.
    White N, Reid F, Harris A, Harries P, Stone P (2016) A systematic review of predictions of survival in palliative care: how accurate are clinicians and who are the experts? PLoS One 11(8):e0161407. Google Scholar
  9. 9.
    Amano K, Maeda I, Shimoyama S, Shinjo T, Shirayama H, Yamada T, Ono S, Yamamoto R, Yamamoto N, Shishido H, Shimizu M, Kawahara M, Aoki S, Demizu A, Goshima M, Goto K, Gyoda Y, Hashimoto K, Otomo S, Sekimoto M, Shibata T, Sugimoto Y, Morita T (2015) The accuracy of physicians’ clinical predictions of survival in patients with advanced cancer. J Pain Symptom Manag 50(2):139–146 e131. Google Scholar
  10. 10.
    Cheon S, Agarwal A, Popovic M, Milakovic M, Lam M, Fu W, DiGiovanni J, Lam H, Lechner B, Pulenzas N, Chow R, Chow E (2016) The accuracy of clinicians’ predictions of survival in advanced cancer: a review. Ann Palliat Med 5(1):22–29. Google Scholar
  11. 11.
    White N, Kupeli N, Vickerstaff V, Stone P (2017) How accurate is the ‘Surprise Question’ at identifying patients at the end of life? A systematic review and meta-analysis. BMC Med 15(1):139. Google Scholar
  12. 12.
    Downar J, Goldman R, Pinto R, Englesakis M, Adhikari NK (2017) The “surprise question” for predicting death in seriously ill patients: a systematic review and meta-analysis. CMAJ 189(13):E484–E493. Google Scholar
  13. 13.
    Trajkovic-Vidakovic M, de Graeff A, Voest EE, Teunissen SC (2012) Symptoms tell it all: a systematic review of the value of symptom assessment to predict survival in advanced cancer patients. Crit Rev Oncol Hematol 84(1):130–148. Google Scholar
  14. 14.
    Lasheen W, Walsh D (2010) The cancer anorexia-cachexia syndrome: myth or reality? Support Care Cancer 18(2):265–272. Google Scholar
  15. 15.
    Dolan RD, McSorley ST, Horgan PG, Laird B, McMillan DC (2017) The role of the systemic inflammatory response in predicting outcomes in patients with advanced inoperable cancer: systematic review and meta-analysis. Crit Rev Oncol Hematol 116:134–146. Google Scholar
  16. 16.
    Hui D, Bansal S, Morgado M, Dev R, Chisholm G, Bruera E (2014) Phase angle for prognostication of survival in patients with advanced cancer: preliminary findings. Cancer 120(14):2207–2214. Google Scholar
  17. 17.
    Hui D, Dev R, Pimental L, Park M, Cerana MA, Liu D, Bruera E (2017) Association between multi-frequency phase angle and survival in patients with advanced cancer. J Pain Symptom Manag 53(3):571–577. Google Scholar
  18. 18.
    Pereira MME, Queiroz MDSC, de Albuquerque NMC, Rodrigues J, Wiegert EVM, Calixto-Lima L, de Oliveira LC (2018) The prognostic role of phase angle in advanced cancer patients: a systematic review. Nutr Clin Pract 33:813–824. Google Scholar
  19. 19.
    Hui D, Moore J, Park M, Liu D, Bruera E (2018) Phase angle and the diagnosis of impending death in patients with advanced cancer. Oncologist In pressGoogle Scholar
  20. 20.
    Simmons CPL, McMillan DC, McWilliams K, Sande TA, Fearon KC, Tuck S, Fallon MT, Laird BJ (2017) Prognostic tools in patients with advanced cancer: a systematic review. J Pain Symptom Manag 53(5):962–970 e910. Google Scholar
  21. 21.
    Laird BJ, Kaasa S, McMillan DC, Fallon MT, Hjermstad MJ, Fayers P, Klepstad P (2013) Prognostic factors in patients with advanced cancer: a comparison of clinicopathological factors and the development of an inflammation-based prognostic system. Clin Cancer Res 19(19):5456–5464. Google Scholar
  22. 22.
    PNd P, Paiva BS, Hui D, Paiva CE (2016) Validation of the modified Glasgow prognostic score in advanced cancer patients receiving palliative care. J Pain Symptom Manag 51(2):270–277. Google Scholar
  23. 23.
    Feliu J, Jimenez-Gordo AM, Madero R, Rodriguez-Aizcorbe JR, Espinosa E, Castro J, Acedo JD, Martinez B, Alonso-Babarro A, Molina R, Camara JC, Garcia-Paredes ML, Gonzalez-Baron M (2011) Development and validation of a prognostic nomogram for terminally ill cancer patients. J Natl Cancer Inst 103(21):1613–1620. Google Scholar
  24. 24.
    Paiva CE, Paiva BSR, de Paula PN, Preto DD, de Oliveira CZ, Yennurajalingam S, Hui D, Bruera E (2018) Development and validation of a prognostic nomogram for ambulatory patients with advanced cancer. Cancer Med 7:3003–3010. Google Scholar
  25. 25.
    Chen YT, Ho CT, Hsu HS, Huang PT, Lin CY, Liu CS, Li TC, Lin CC, Lin WY (2015) Objective palliative prognostic score among patients with advanced cancer. J Pain Symptom Manag 49(4):690–696. Google Scholar
  26. 26.
    Suh SY, Choi YS, Shim JY, Kim YS, Yeom CH, Kim D, Park SA, Kim S, Seo JY, Kim SH, Kim D, Choi SE, Ahn HY (2010) Construction of a new, objective prognostic score for terminally ill cancer patients: a multicenter study. Support Care Cancer 18(2):151–157. Google Scholar
  27. 27.
    Jho HJ, Suh SY, Yoon SJ, Lee SS, Ahn HY, Yamaguchi T, Mori M, Maeda I, Baba M, Morita T (2016) Prospective validation of the objective prognostic score for advanced cancer patients in diverse palliative settings. J Pain Symptom Manag 52(3):420–427. Google Scholar
  28. 28.
    Gwilliam B, Keeley V, Todd C, Gittins M, Roberts C, Kelly L, Barclay S, Stone PC (2011) Development of prognosis in palliative care study (PiPS) predictor models to improve prognostication in advanced cancer: prospective cohort study. Bmj 343:d4920. Google Scholar
  29. 29.
    Baba M, Maeda I, Morita T, Hisanaga T, Ishihara T, Iwashita T, Kaneishi K, Kawagoe S, Kuriyama T, Maeda T, Mori I, Nakajima N, Nishi T, Sakurai H, Shimoyama S, Shinjo T, Shirayama H, Yamada T, Ono S, Ozawa T, Yamamoto R, Tsuneto S (2015) Independent validation of the modified prognosis palliative care study predictor models in three palliative care settings. J Pain Symptom Manag 49(5):853–860. Google Scholar
  30. 30.
    Bourgeois H, Grude F, Solal-Celigny P, Dupuis O, Voog E, Ganem G, Denis F, Zinger M, Juhel-Voog L, Lafond C, Maillart P, Capitain O, Delva R, Soulie P, Abadie-Lacourtoisie S, Guerin-Meyer V, Morin-Meschin ME, Commer JM, Gangler A, d'Aillieres B, Zannetti A, Bourbouloux E, Berton-Rigault D, Lebouvier-Sadot S, Kaassis M, Baudon J, Lam YH, Bizieux A, Marcq M, Edeline J, Le Du F, Lefeuvre C, Deguiral P, Delecroix V, Blot E, Egreteau J, Goudier MJ, Lamy R, Ferec M, Artignan X, Corbinais S, Morel H, Hardy-Bessard AC, Alleaume C, Naudeix E, Cojocarasu O, Metges JP, Riche C, Gamelin E, Deniel-Lagadec D, Marhuenda F, Ingrand P, Douillard JY (2017) Clinical validation of a prognostic tool in a population of outpatients treated for incurable cancer undergoing anticancer therapy: PRONOPALL study. Ann Oncol 28(7):1612–1617. Google Scholar
  31. 31.
    Barbot AC, Mussault P, Ingrand P, Tourani JM (2008) Assessing 2-month clinical prognosis in hospitalized patients with advanced solid tumors. J Clin Oncol 26(15):2538–2543. Google Scholar
  32. 32.
    Scarpi E, Maltoni M, Miceli R, Mariani L, Caraceni A, Amadori D, Nanni O (2011) Survival prediction for terminally ill cancer patients: revision of the palliative prognostic score with incorporation of delirium. Oncologist 16(12):1793–1799. Google Scholar
  33. 33.
    Baba M, Maeda I, Morita T, Inoue S, Ikenaga M, Matsumoto Y, Sekine R, Yamaguchi T, Hirohashi T, Tajima T, Tatara R, Watanabe H, Otani H, Takigawa C, Matsuda Y, Nagaoka H, Mori M, Tei Y, Hiramoto S, Suga A, Kinoshita H (2015) Survival prediction for advanced cancer patients in the real world: a comparison of the Palliative Prognostic Score, Delirium-Palliative Prognostic Score, Palliative Prognostic Index and modified Prognosis in Palliative Care Study predictor model. Eur J Cancer 51(12):1618–1629. Google Scholar
  34. 34.
    Hui D, dos Santos R, Chisholm G, Bansal S, Silva TB, Kilgore K, Crovador CS, Yu X, Swartz MD, Perez-Cruz PE, Leite Rde A, Nascimento MS, Reddy S, Seriaco F, Yennu S, Paiva CE, Dev R, Hall S, Fajardo J, Bruera E (2014) Clinical signs of impending death in cancer patients. Oncologist 19(6):681–687. Google Scholar
  35. 35.
    Hui D, Dos Santos R, Chisholm G, Bansal S, Souza Crovador C, Bruera E (2015) Bedside clinical signs associated with impending death in patients with advanced cancer: preliminary findings of a prospective, longitudinal cohort study. Cancer 121(6):960–967. Google Scholar
  36. 36.
    Hui D, Hess K, dos Santos R, Chisholm G, Bruera E (2015) A diagnostic model for impending death in cancer patients: preliminary report. Cancer 121(21):3914–3921. Google Scholar
  37. 37.
    Morita T, Ichiki T, Tsunoda J, Inoue S, Chihara S (1998) A prospective study on the dying process in terminally ill cancer patients. Am J Hosp Palliat Care 15(4):217–222. Google Scholar
  38. 38.
    Buchner L, Vamvakias G, Rom D (2010) Validation of a photonumeric wrinkle assessment scale for assessing nasolabial fold wrinkles. Plast Reconstr Surg 126(2):596–601. Google Scholar
  39. 39.
    Jones CM, Roth B, Mercado AM, Russell KA, Daskalogiannakis J, Samson TD, Hathaway RR, Smith A, Mackay DR, Long RE Jr (2018) The Americleft Project: comparison of ratings using two-dimensional versus three-dimensional images for evaluation of nasolabial appearance in patients with unilateral cleft lip and palate. J Carniofac Surg 29(1):105–108. Google Scholar
  40. 40.
    Day DJ, Littler CM, Swift RW, Gottlieb S (2004) The wrinkle severity rating scale: a validation study. Am J Clin Dermatol 5(1):49–52. Google Scholar
  41. 41.
    Fearon KC (2008) Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer 44(8):1124–1132. Google Scholar
  42. 42.
    Del Fabbro E, Hui D, Nooruddin ZI, Dalal S, Dev R, Freer G, Roberts L, Palmer JL, Bruera E (2010) Associations among hypogonadism, C-reactive protein, symptom burden, and survival in male cancer patients with cachexia: a preliminary report. J Pain Symptom Manag 39(6):1016–1024. Google Scholar
  43. 43.
    Blum D, Omlin A, Baracos VE, Solheim TS, Tan BH, Stone P, Kaasa S, Fearon K, Strasser F, European Palliative Care Research C (2011) Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit Rev Oncol Hematol 80(1):114–144. Google Scholar
  44. 44.
    Martin L, Senesse P, Gioulbasanis I, Antoun S, Bozzetti F, Deans C, Strasser F, Thoresen L, Jagoe RT, Chasen M, Lundholm K, Bosaeus I, Fearon KH, Baracos VE (2015) Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol 33(1):90–99. Google Scholar
  45. 45.
    Vagnildhaug OM, Blum D, Wilcock A, Fayers P, Strasser F, Baracos VE, Hjermstad MJ, Kaasa S, Laird B, Solheim TS, European Palliative Care Cancer Symptom study g (2017) The applicability of a weight loss grading system in cancer cachexia: a longitudinal analysis. J Cachexia Sarcopenia Muscle 8(5):789–797. Google Scholar
  46. 46.
    Del Fabbro E, Parsons H, Warneke CL, Pulivarthi K, Litton JK, Dev R, Palla SL, Brewster A, Bruera E (2012) The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist 17(10):1240–1245. Google Scholar
  47. 47.
    Delitto D, Judge SM, George TJ Jr, Sarosi GA, Thomas RM, Behrns KE, Hughes SJ, Judge AR, Trevino JG (2017) A clinically applicable muscular index predicts long-term survival in resectable pancreatic cancer. Surgery 161(4):930–938. Google Scholar
  48. 48.
    Martin L, Birdsell L, MacDonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB, Baracos V (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12):1539–1547. Google Scholar
  49. 49.
    Portenoy RK, Taylor D, Messina J, Tremmel L (2006) A randomized, placebo-controlled study of fentanyl buccal tablet for breakthrough pain in opioid-treated patients with cancer. Clin J Pain 22(9):805–811Google Scholar
  50. 50.
    Gibson DJ, Burden ST, Strauss BJ, Todd C, Lal S (2015) The role of computed tomography in evaluating body composition and the influence of reduced muscle mass on clinical outcome in abdominal malignancy: a systematic review. Eur J Clin Nutr 69(10):1079–1086. Google Scholar
  51. 51.
    Caan BJ, Meyerhardt JA, Kroenke CH, Alexeeff S, Xiao J, Weltzien E, Feliciano EC, Castillo AL, Quesenberry CP, Kwan ML, Prado CM (2017) Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS study). Cancer Epidemiol Biomark Prev 26(7):1008–1015. Google Scholar
  52. 52.
    Paireder M, Asari R, Kristo I, Rieder E, Tamandl D, Ba-Ssalamah A, Schoppmann SF (2017) Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur J Surg Oncol 43(2):478–484. Google Scholar
  53. 53.
    Dalal S, Hui D, Bidaut L, Lem K, Del Fabbro E, Crane C, Reyes-Gibby CC, Bedi D, Bruera E (2012) Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: a pilot study. J Pain Symptom Manag 44(2):181–191. Google Scholar
  54. 54.
    Seow H, Barbera L, Sutradhar R, Howell D, Dudgeon D, Atzema C, Liu Y, Husain A, Sussman J, Earle C (2011) Trajectory of performance status and symptom scores for patients with cancer during the last six months of life. J Clin Oncol 29(9):1151–1158. Google Scholar
  55. 55.
    Quinten C, Coens C, Mauer M, Comte S, Sprangers MAG, Cleeland C, Osoba D, Bjordal K, Bottomley A (2009) Baseline quality of life as a prognostic indicator of survival: a meta-analysis of individual patient data from EORTC clinical trials. Lancet Oncol 10(9):865–871. Google Scholar
  56. 56.
    Ediebah DE, Quinten C, Coens C, Ringash J, Dancey J, Zikos E, Gotay C, Brundage M, Tu D, Flechtner HH, Greimel E, Reeve BB, Taphoorn M, Reijneveld J, Dirven L, Bottomley A, Canadian Cancer Trials Group, European Organization for Research and Treatment of Cancer (2018) Quality of life as a prognostic indicator of survival: a pooled analysis of individual patient data from Canadian Cancer Trials Group clinical trials. Cancer 124:3409–3416. Google Scholar
  57. 57.
    Del Fabbro E, Hui D, Dalal S, Dev R, Nooruddin ZI, Bruera E (2011) Clinical outcomes and contributors to weight loss in a cancer cachexia clinic. J Palliat Med 14(9):1004–1008. Google Scholar
  58. 58.
    Farhangfar A, Makarewicz M, Ghosh S, Jha N, Scrimger R, Gramlich L, Baracos V (2014) Nutrition impact symptoms in a population cohort of head and neck cancer patients: multivariate regression analysis of symptoms on oral intake, weight loss and survival. Oral Oncol 50(9):877–883. Google Scholar
  59. 59.
    Vigano A, Del Fabbro E, Bruera E, Borod M (2012) The cachexia clinic: from staging to managing nutritional and functional problems in advanced cancer patients. Crit Rev Oncog 17(3):293–303Google Scholar
  60. 60.
    Blum D, Stene GB, Solheim TS, Fayers P, Hjermstad MJ, Baracos VE, Fearon K, Strasser F, Kaasa S, Euro I (2014) Validation of the consensus-definition for cancer cachexia and evaluation of a classification model - a study based on data from an international multicentre project (EPCRC-CSA). Ann Oncol 25(8):1635–1642. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • David Hui
    • 1
    Email author
  • Carlos Eduardo Paiva
    • 2
  • Egidio G. Del Fabbro
    • 3
  • Christopher Steer
    • 4
    • 5
  • Jane Naberhuis
    • 1
  • Marianne van de Wetering
    • 6
  • Paz Fernández-Ortega
    • 7
  • Tatsuya Morita
    • 8
  • Sang-Yeon Suh
    • 9
  • Eduardo Bruera
    • 1
  • Masanori Mori
    • 8
  1. 1.Department of Palliative Care, Rehabilitation and Integrative MedicineThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Clinical OncologyBarretos Cancer HospitalBarretosBrazil
  3. 3.Division of Hematology/Oncology and Palliative Care, Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA
  4. 4.Border Medical OncologyAlbury Wodonga Regional Cancer CentreAlburyAustralia
  5. 5.UNSW Rural Clinical SchoolAlburyAustralia
  6. 6.Department of Pediatric Oncology, Emma Children’s HospitalAcademic Medical CenterAmsterdamThe Netherlands
  7. 7.Institut Català d’Oncologia – ICONursing University of BarcelonaBarcelonaSpain
  8. 8.Department of Palliative and Supportive Care, Palliative Care Team and Seirei HospiceSeirei Mikatahara General HospitalShizuokaJapan
  9. 9.Department of Family Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea, Department of Medicine, School of MedicineDongguk UniversitySeoulSouth Korea

Personalised recommendations