Association between glycemic control, age, and outcomes among intensively treated patients with acute myeloid leukemia

  • Patrick Kuhlman
  • Scott Isom
  • Timothy S. Pardee
  • Cynthia Burns
  • Bernard Tawfik
  • Zanetta S. Lamar
  • Bayard L. Powell
  • Heidi D. KlepinEmail author
Original Article



To investigate the impact of hyperglycemia and glycemic variability during intensive acute myeloid leukemia therapy (AML) on outcomes by age.


Retrospective study of 262 consecutive patients with newly diagnosed AML hospitalized for intensive induction. Hyperglycemia was assessed by mean blood glucose (BG) (mg/dL) during hospitalization and glycemic variability was determined by the standard deviation (SD) of mean BG. Outcomes were complete remission ± incomplete count recovery (CR + CRi), and overall survival (OS). We used logistic regression to evaluate CR + CRi, and Cox proportional hazard models for OS, stratified by age (< 60 vs ≥ 60 years).


Older patients (N = 138, median age 70) had higher baseline comorbidity (CCI > 1 60.1% vs 25.8%) and prevalence of diabetes (20.3% vs 7.3%) compared to younger (N = 124, median age 47). The mean ± SD number of BG values obtained per patient during hospitalization was 61 ± 71. The mean (± SD) glucose (mg/dL) during hospitalization was 121.7 (25.9) in older patients (≥ 60 years) versus 111.6 (16.4) in younger. In older patients, higher mean glucose and greater glycemic variability were associated with lower odds of remission (OR 0.80, 95% CI 0.69–0.93 and OR 0.73, 95% CI 0.61–0.88 respectively, per 10-unit increase) and higher mortality rates (HR 1.13, 95% CI 1.05–1.21 and HR 1.17, 95% CI 1.09–1.26, respectively, per 10-unit increase) in multivariate analyses.


Our observations that hyperglycemia and increased glycemic variability were associated with lower remission rates and increased mortality in older patients suggest glycemic control may be a potentially modifiable factor to improve AML outcomes.


Acute myeloid leukemia Hyperglycemia Glycemic variability Diabetes Older 



We thank Karen Klein, MA ELS (Research Support Core Wake Forest School of Medicine Clinical Translational Science Institute), for her editorial contributions to the manuscript.

Funding information

Research reported in this publication was supported by the National Cancer Institute’s Cancer Center Support Grant award number P30CA012197 issued to the Wake Forest Baptist Comprehensive Cancer Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute. Heidi. D. Klepin was supported by a Paul Beeson Career Development Award in Aging Research (K23AG038361; supported by NIA, AFAR, The John A. Hartford Foundation, and The Atlantic Philanthropies) and The Gabrielle’s Angel Foundation for Cancer Research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adult acute myeloid leukemia (PDR)- Health Professional Version (2016). NIH: National Cancer InstituteGoogle Scholar
  2. 2.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474. CrossRefPubMedGoogle Scholar
  3. 3.
    Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152. CrossRefPubMedGoogle Scholar
  4. 4.
    Tawfik B, Pardee TS, Isom S, Sliesoraitis S, Winter A, Lawrence J, Powell BL, Klepin HD (2016) Comorbidity, age, and mortality among adults treated intensively for acute myeloid leukemia (AML). J Geriatr Oncol 7(1):24–31. CrossRefPubMedGoogle Scholar
  5. 5.
    Etienne A, Esterni B, Charbonnier A, Mozziconacci MJ, Arnoulet C, Coso D, Puig B, Gastaut JA, Maraninchi D, Vey N (2007) Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer 109(7):1376–1383CrossRefGoogle Scholar
  6. 6.
    Deschler B, Ihorst G, Platzbecker U, Germing U, Marz E, de Figuerido M, Fritzsche K, Haas P, Salih HR, Giagounidis A, Selleslag D, Labar B, de Witte T, Wijermans P, Lubbert M (2013) Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 98(2):208–216. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Giles FJ, Borthakur G, Ravandi F, Faderl S, Verstovsek S, Thomas D, Wierda W, Ferrajoli A, Kornblau S, Pierce S, Albitar M, Cortes J, Kantarjian H (2007) The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br J Haematol 136(4):624–627CrossRefGoogle Scholar
  8. 8.
    Oran B, Weisdorf DJ (2012) Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica 97(12):1916–1924. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Savic A, Kvrgic V, Rajic N, Urosevic I, Kovacevic D, Percic I, Popovic S (2012) The hematopoietic cell transplantation comorbidity index is a predictor of early death and survival in adult acute myeloid leukemia patients. Leukemia Res 36(4):479–482. CrossRefGoogle Scholar
  10. 10.
    Ali NA, O'Brien JM Jr, Blum W, Byrd JC, Klisovic RB, Marcucci G, Phillips G, Marsh CB, Lemeshow S, Grever MR (2007) Hyperglycemia in patients with acute myeloid leukemia is associated with increased hospital mortality. Cancer 110(1):96–102. CrossRefPubMedGoogle Scholar
  11. 11.
    Matias Cdo N, Lima V, Teixeira HM, Souto FR, Magalhaes V (2013) Hyperglycemia increases the complicated infection and mortality rates during induction therapy in adult acute leukemia patients. Revista Brasileira de Hematologia e Hemoterapia 35(1):39–43. CrossRefPubMedGoogle Scholar
  12. 12.
    Storey S, Von AD (2015) Prevalence and impact of hyperglycemia on hospitalized leukemia patients. Eur J Oncol Nurs 19(1):13–17. CrossRefPubMedGoogle Scholar
  13. 13.
    Storey S (2016) Impact of hyperglycemia and age on outcomes in patients with acute myeloid leukemia. Oncology Nurs Forum 43(5):595–601. CrossRefGoogle Scholar
  14. 14.
    Hirsch IB (2015) Glycemic variability and diabetes complications: does it matter? Of course it does! Diabet Care 38(8):1610–1614. CrossRefGoogle Scholar
  15. 15.
    Ceriello A, Ihnat MA (2010) ‘Glycaemic variability’: a new therapeutic challenge in diabetes and the critical care setting. Diabet Med 27(8):862–867. CrossRefPubMedGoogle Scholar
  16. 16.
    Ceriello A, Kilpatrick ES (2013) Glycemic variability: both sides of the story. Diabet Care 36(Suppl 2):S272–S275. CrossRefGoogle Scholar
  17. 17.
    Krinsley JS (2008) Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 36(11):3008–3013. CrossRefPubMedGoogle Scholar
  18. 18.
    Mendez CE, Mok KT, Ata A, Tanenberg RJ, Calles-Escandon J, Umpierrez GE (2013) Increased glycemic variability is independently associated with length of stay and mortality in noncritically ill hospitalized patients. Diabet Care 36(12):4091–4097. CrossRefGoogle Scholar
  19. 19.
    Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE, Anderson JE, Petersdorf SH (2006) Age and acute myeloid leukemia. Blood 107(9):3481–3485. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a southwest oncology group/eastern cooperative oncology group study. Blood 96(13):4075–4083PubMedGoogle Scholar
  21. 21.
    Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, Schiffer CA, Doehner H, Tallman MS, Lister TA, Lo-Coco F, Willemze R, Biondi A, Hiddemann W, Larson RA, Lowenberg B, Sanz MA, Head DR, Ohno R, Bloomfield CD (2003) Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21(24):4642–4649. CrossRefPubMedGoogle Scholar
  22. 22.
    Ma YS, Yang IP, Tsai HL, Huang CW, Juo SH, Wang JY (2014) High glucose modulates antiproliferative effect and cytotoxicity of 5-fluorouracil in human colon cancer cells. DNA Cell Biol 33(2):64–72. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Biernacka KM, Uzoh CC, Zeng L, Persad RA, Bahl A, Gillatt D, Perks CM, Holly JM (2013) Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocrine-Related Cancer 20(5):741–751. CrossRefPubMedGoogle Scholar
  24. 24.
    Zeng L, Biernacka KM, Holly JM, Jarrett C, Morrison AA, Morgan A, Winters ZE, Foulstone EJ, Shield JP, Perks CM (2010) Hyperglycaemia confers resistance to chemotherapy on breast cancer cells: the role of fatty acid synthase. Endocrine-Related Cancer 17(2):539–551. CrossRefPubMedGoogle Scholar
  25. 25.
    Muggeo M, Verlato G, Bonora E, Ciani F, Moghetti P, Eastman R, Crepaldi G, de Marco R (1995) Long-term instability of fasting plasma glucose predicts mortality in elderly NIDDM patients: the Verona diabetes study. Diabetologia 38(6):672–679CrossRefGoogle Scholar
  26. 26.
    Muggeo M, Verlato G, Bonora E, Zoppini G, Corbellini M, de Marco R (1997) Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with non-insulin-dependent diabetes mellitus: the Verona diabetes study. Circulation 96(6):1750–1754CrossRefGoogle Scholar
  27. 27.
    Egi M, Bellomo R, Stachowski E, French CJ, Hart G (2006) Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 105(2):244–252CrossRefGoogle Scholar
  28. 28.
    Meugnier E, Faraj M, Rome S, Beauregard G, Michaut A, Pelloux V, Chiasson JL, Laville M, Clement K, Vidal H, Rabasa-Lhoret R (2007) Acute hyperglycemia induces a global downregulation of gene expression in adipose tissue and skeletal muscle of healthy subjects. Diabetes 56(4):992–999. CrossRefPubMedGoogle Scholar
  29. 29.
    Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A (2003) Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes 52(11):2795–2804CrossRefGoogle Scholar
  30. 30.
    Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabet/Metab Res Rev 22(3):198–203. CrossRefGoogle Scholar
  31. 31.
    Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2005) Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis 183(2):259–267. CrossRefPubMedGoogle Scholar
  32. 32.
    Piconi L, Quagliaro L, Da Ros R, Assaloni R, Giugliano D, Esposito K, Szabo C, Ceriello A (2004) Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly (ADP-ribose) polymerase. J Thromb Haemos 2(8):1453–1459. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wake Forest University School of MedicineWinston-SalemUSA
  2. 2.University of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations