Advertisement

Biophysical skin measurements to evaluate the effectiveness of photobiomodulation therapy in the prevention of acute radiation dermatitis in breast cancer patients

  • Jolien RobijnsEmail author
  • Sandrine Censabella
  • Stefan Claes
  • Luc Pannekoeke
  • Lore Bussé
  • Dora Colson
  • Iris Kaminski
  • Joy Lodewijckx
  • Paul Bulens
  • Annelies Maes
  • Leen Noé
  • Marc Brosens
  • An Timmermans
  • Ivo Lambrichts
  • Veerle Somers
  • Jeroen Mebis
Original Article

Abstract

Purpose

The purpose of this study was to evaluate objectively the effectiveness of photobiomodulation therapy (PBMT) for the prevention of acute radiation dermatitis (ARD) by using biophysical skin measurements.

Methods

A randomized, placebo-controlled trial with 120 breast cancer patients who underwent an identical radiotherapy (RT) regimen post-lumpectomy was performed (TRANSDERMIS trial). Patients were randomized to receive PBM (808 nm CW/905 nm pulsed, 168 mW/cm2, spot size 19.6 cm2, fluence 4 J/cm2) or placebo treatments from the first day of RT (2×/week). Biophysical skin measurements were collected to assess the skin pigmentation and barrier function. Measurements were collected at the first day of RT, a RT dose of 40 Gray (Gy), and the end of RT (66 Gy).

Results

The incidence of moist desquamation was significantly higher in the control than in the PBMT group at the end of RT (30 vs. 7%, respectively, odds ratio = 6, p = 0.004). The biophysical skin measures showed that the mean percentage change from the baseline transepidermal water loss (TEWL), erythema, and melanin values was significantly higher in the control than in the PBMT group at the end of RT (ps < 0.05). Logistic regression analysis revealed that the risk on moist desquamation was significantly increased for patients with a large (> 800 cc) breast volume (odds ratio = 4, p = 0.017).

Conclusions

This is the first randomized controlled trial demonstrating by objective measurements that PBMT is effective in reducing the incidence of moist desquamation in breast cancer patients undergoing RT. Additionally, a large breast volume is an important risk factor for the development of moist desquamation.

Keywords

Breast cancer Photobiomodulation therapy Radiotherapy Skin toxicity Radiation dermatitis Objective skin evaluation 

Notes

Acknowledgments

The corresponding author, Mrs. Jolien Robijns, received the Young Investigator Award of the MASCC for her scientific abstract.

Funding information

This research is part of the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, financially supported by the foundation Limburg Sterk Merk, province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital. Additionally, this research is supported by Kom op Tegen Kanker, Limburgs Kankerfonds, and ASA Srl.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The ethics committees of the Jessa Hospital and the University of Hasselt approved the study (B243201524443). All procedures performed in the study were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

520_2018_4487_MOESM1_ESM.docx (130 kb)
ESM 1 (DOCX 130 kb)

References

  1. 1.
    Wells M, MacBride S (2003) Radiation skin reactions. Elsevier, New YorkGoogle Scholar
  2. 2.
    Seite S, Bensadoun RJ, Mazer JM (2017) Prevention and treatment of acute and chronic radiodermatitis. Breast Cancer (Dove Med Press) 9:551–557.  https://doi.org/10.2147/BCTT.S149752 CrossRefGoogle Scholar
  3. 3.
    Robijns J, Laubach H-J (2018) Acute and chronic radiodermatitis: clinical signs, pathophysiology, risk factors and management options. JEWDS 15(1):2–9.  https://doi.org/10.1097/01.EWX.0000529960.52517.4c CrossRefGoogle Scholar
  4. 4.
    Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072CrossRefGoogle Scholar
  5. 5.
    Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31(5):1341–1346.  https://doi.org/10.1016/0360-3016(95)00060-C CrossRefPubMedGoogle Scholar
  6. 6.
    Hu SC, Hou MF, Luo KH, Chuang HY, Wei SY, Chen GS, Chiang W, Huang CJ (2014) Changes in biophysical properties of the skin following radiotherapy for breast cancer. J Dermatol 41(12):1087–1094.  https://doi.org/10.1111/1346-8138.12669 CrossRefPubMedGoogle Scholar
  7. 7.
    Wong RK, Bensadoun RJ, Boers-Doets CB, Bryce J, Chan A, Epstein JB, Eaby-Sandy B, Lacouture ME (2013) Clinical practice guidelines for the prevention and treatment of acute and late radiation reactions from the MASCC Skin Toxicity Study Group. Support Care Cancer 21(10):2933–2948.  https://doi.org/10.1007/s00520-013-1896-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Hamblin M, Ferraresi C, Huang YY, de Freitas LF, Carroll J (2018) Low-Level Light Therapy: Photobiomodulation. Tutorial Texts in Optical Engineering, vol TT115. SPIE Press, Bellingham 390CrossRefGoogle Scholar
  9. 9.
    Schindl M, Kerschan K, Schindl A, Schon H, Heinzl H, Schindl L (1999) Induction of complete wound healing in recalcitrant ulcers by low-intensity laser irradiation depends on ulcer cause and size. Photodermatol Photoimmunol Photomed 15(1):18–21CrossRefGoogle Scholar
  10. 10.
    DeLand MM, Weiss RA, McDaniel DH, Geronemus RG (2007) Treatment of radiation-induced dermatitis with light-emitting diode (LED) photomodulation. Lasers Surg Med 39(2):164–168.  https://doi.org/10.1002/lsm.20455 CrossRefPubMedGoogle Scholar
  11. 11.
    Fife D, Rayhan DJ, Behnam S, Ortiz A, Elkeeb L, Aquino L, Eduardo Roa D, Ramsinghani N, Kuo J, Newcomb R, Zachary CB, Kelly KM (2010) A randomized, controlled, double-blind study of light emitting diode photomodulation for the prevention of radiation dermatitis in patients with breast cancer. Dermatol Surg 36(12):1921–1927.  https://doi.org/10.1111/j.1524-4725.2010.01801.x CrossRefPubMedGoogle Scholar
  12. 12.
    Strouthos I, Chatzikonstantinou G, Tselis N, Bon D, Karagiannis E, Zoga E, Ferentinos K, Maximenko J, Nikolettou-Fischer V, Zamboglou N (2017) Photobiomodulation therapy for the management of radiation-induced dermatitis : a single-institution experience of adjuvant radiotherapy in breast cancer patients after breast conserving surgery. Strahlenther Onkol 193(6):491–498.  https://doi.org/10.1007/s00066-017-1117-x CrossRefPubMedGoogle Scholar
  13. 13.
    Censabella S, Claes S, Robijns J, Bulens P, Mebis J (2016) Photobiomodulation for the management of radiation dermatitis: the DERMIS trial, a pilot study of MLS® laser therapy in breast cancer patients. Support Care Cancer 24:1–9.  https://doi.org/10.1007/s00520-016-3232-0 CrossRefGoogle Scholar
  14. 14.
    Robijns J, Censabella S, Claes S, Pannekoeke L, Bussé L, Colson D, Kaminski I, Bulens P, Maes A, Noé L, Brosens M, Timmermans A, Lambrichts I, Somers V, Mebis J (2018) Prevention of acute radiodermatitis by photobiomodulation: a randomized, placebo-controlled trial in breast cancer patients (TRANSDERMIS trial). Lasers Surg Med 50(7):763–771.  https://doi.org/10.1002/lsm.22804 CrossRefGoogle Scholar
  15. 15.
    Burnet NG, Thomas SJ, Burton KE, Jefferies SJ (2004) Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2):153–161.  https://doi.org/10.1102/1470-7330.2004.0054 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nair RG, Bensadoun RJ (2016) Mitigation of cancer therapy side-effects with light. Morgan & Claypool Publishers, San RafaelCrossRefGoogle Scholar
  17. 17.
    Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24(6):2793–2805.  https://doi.org/10.1007/s00520-016-3153-y CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pinnagoda J, Tupker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 22(3):164–178CrossRefGoogle Scholar
  19. 19.
    Rogiers V, E. Group (2001) EEMCO guidance for the assessment of transepidermal water loss in cosmetic sciences. Skin Pharmacol Appl Ski Physiol 14(2):117–128 56341CrossRefGoogle Scholar
  20. 20.
    Heinrich U, Koop U, Leneveu-Duchemin MC, Osterrieder K, Bielfeldt S, Chkarnat C, Degwert J, Hantschel D, Jaspers S, Nissen HP, Rohr M, Schneider G, Tronnier H (2003) Multicentre comparison of skin hydration in terms of physical-, physiological- and product-dependent parameters by the capacitive method (Corneometer CM 825). Int J Cosmet Sci 25(1–2):45–53.  https://doi.org/10.1046/j.1467-2494.2003.00172.x CrossRefPubMedGoogle Scholar
  21. 21.
    Clarys P, Alewaeters K, Lambrecht R, Barel AO (2000) Skin color measurements: comparison between three instruments: the Chromameter(R), the DermaSpectrometer(R) and the Mexameter(R). Skin Res Technol 6(4):230–238CrossRefGoogle Scholar
  22. 22.
    Yamazaki H, Yoshida K, Kobayashi K, Tsubokura T, Kodani N, Aibe N, Ikeno H, Nishimura T (2012) Assessment of radiation dermatitis using objective analysis for patients with breast cancer treated with breast-conserving therapy: influence of body weight. Jpn J Radiol 30(6):486–491.  https://doi.org/10.1007/s11604-012-0073-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Primavera G, Carrera M, Berardesca E, Pinnaro P, Messina M, Arcangeli G (2006) A double-blind, vehicle-controlled clinical study to evaluate the efficacy of MAS065D (XClair), a hyaluronic acid-based formulation, in the management of radiation-induced dermatitis. Cutan Ocul Toxicol 25(3):165–171.  https://doi.org/10.1080/15569520600860009 CrossRefPubMedGoogle Scholar
  24. 24.
    Yoshida EJ, Chen H, Torres MA, Curran WJ, Liu T (2011) Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy. Med Phys 38(10):5747–5755.  https://doi.org/10.1118/1.3633942 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Iacovelli NA, Naimo S, Bonfantini F, Cavallo A, Bossi P, Fallai C, Pignoli E, Alfieri S, Bergamini C, Favales F, Orlandi E (2017) Preemptive treatment with Xonrid(R), a medical device to reduce radiation induced dermatitis in head and neck cancer patients receiving curative treatment: a pilot study. Support Care Cancer 25(6):1787–1795.  https://doi.org/10.1007/s00520-017-3569-z CrossRefPubMedGoogle Scholar
  26. 26.
    Nystrom J, Geladi P, Lindholm-Sethson B, Rattfelt J, Svensk AC, Franzen L (2004) Objective measurements of radiotherapy-induced erythema. Skin Res Technol 10(4):242–250CrossRefGoogle Scholar
  27. 27.
    Yamazaki H, Yoshida K, Kotsuma T, Kuriyama K, Masuda N, Nishimura T, Kobayashi K, Tsubokura T, Nishimura T (2009) Longitudinal practical measurement of skin color and moisture during and after breast-conserving therapy: influence of neoadjuvant systemic therapy. Jpn J Radiol 27(8):309–315.  https://doi.org/10.1007/s11604-009-0345-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361.  https://doi.org/10.3934/biophy.2017.3.337 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, Bala Singh S (2015) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 8(6):489–501.  https://doi.org/10.1002/jbio.201400058 CrossRefPubMedGoogle Scholar
  30. 30.
    Khoury JG, Goldman MP (2008) Use of light-emitting diode photomodulation to reduce erythema and discomfort after intense pulsed light treatment of photodamage. J Cosmet Dermatol 7(1):30–34.  https://doi.org/10.1111/j.1473-2165.2008.00358.x CrossRefPubMedGoogle Scholar
  31. 31.
    Barolet D, Boucher A (2008) LED photoprevention: reduced MED response following multiple LED exposures. Lasers Surg Med 40(2):106–112.  https://doi.org/10.1002/lsm.20615 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflamm 2014:625048.  https://doi.org/10.1155/2014/625048 CrossRefGoogle Scholar
  33. 33.
    Kim HK, Min KO, Choi JH, Kim SH (2016) Effects of low-level laser therapy, electroacupuncture, and radiofrequency on the pigmentation and skin tone of adult women. J Phys Ther Sci 28(5):1407–1411.  https://doi.org/10.1589/jpts.28.1407 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee SY, You CE, Park MY (2007) Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med 39(2):180–188.  https://doi.org/10.1002/lsm.20412 CrossRefPubMedGoogle Scholar
  35. 35.
    Barolet D (2018) Photobiomodulation in dermatology: harnessing light from visible to near infrared. MRA 6(1).  https://doi.org/10.18103/mra.v6i1.1610
  36. 36.
    Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R (2012) Structure and function of the epidermis related to barrier properties. Clin Dermatol 30(3):257–262.  https://doi.org/10.1016/j.clindermatol.2011.08.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Schmuth M, Wimmer MA, Hofer S, Sztankay A, Weinlich G, Linder DM, Elias PM, Fritsch PO, Fritsch E (2002) Topical corticosteroid therapy for acute radiation dermatitis: a prospective, randomized, double-blind study. Br J Dermatol 146(6):983–991CrossRefGoogle Scholar
  38. 38.
    Jensen JM, Gau T, Schultze J, Lemmnitz G, Folster-Holst R, May T, Abels C, Proksch E (2011) Treatment of acute radiodermatitis with an oil-in-water emulsion following radiation therapy for breast cancer: a controlled, randomized trial. Strahlenther Onkol 187(6):378–384.  https://doi.org/10.1007/s00066-011-2224-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Park SY, Kim JH, Cho SI, Kim KI, Cho HJ, Park CW, Lee CH, Kim HO (2014) Induction of a hardening phenomenon and quantitative changes of ceramides in stratum corneum. Ann Dermatol 26(1):35–42.  https://doi.org/10.5021/ad.2014.26.1.35 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med 38(1):74–83.  https://doi.org/10.1002/lsm.20271 CrossRefPubMedGoogle Scholar
  41. 41.
    Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, Olson D (2007) Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 39(6):534–542.  https://doi.org/10.1002/lsm.20519 CrossRefPubMedGoogle Scholar
  42. 42.
    Rizzi M, Migliario M, Tonello S, Rocchetti V, Reno F (2018) Photobiomodulation induces in vitro re-epithelialization via nitric oxide production. Lasers Med Sci 33:1003–1008.  https://doi.org/10.1007/s10103-018-2443-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Sperandio FF, Simoes A, Correa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8(10):795–803.  https://doi.org/10.1002/jbio.201400064 CrossRefPubMedGoogle Scholar
  44. 44.
    Censabella S, Claes S, Orlandini M, Braekers R, Bulens P (2017) Efficacy of a hydroactive colloid gel versus historical controls for the prevention of radiotherapy-induced moist desquamation in breast cancer patients. Eur J Oncol Nurs 29:1–7.  https://doi.org/10.1016/j.ejon.2017.04.003 CrossRefPubMedGoogle Scholar
  45. 45.
    De Langhe S, Mulliez T, Veldeman L, Remouchamps V, van Greveling A, Gilsoul M, De Schepper E, De Ruyck K, De Neve W, Thierens H (2014) Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy. BMC Cancer 14:711.  https://doi.org/10.1186/1471-2407-14-711 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jolien Robijns
    • 1
    Email author return OK on get
  • Sandrine Censabella
    • 2
  • Stefan Claes
    • 3
  • Luc Pannekoeke
    • 3
  • Lore Bussé
    • 1
  • Dora Colson
    • 1
  • Iris Kaminski
    • 1
  • Joy Lodewijckx
    • 1
  • Paul Bulens
    • 2
    • 3
  • Annelies Maes
    • 2
    • 3
  • Leen Noé
    • 2
    • 3
  • Marc Brosens
    • 2
    • 3
  • An Timmermans
    • 4
  • Ivo Lambrichts
    • 1
  • Veerle Somers
    • 1
  • Jeroen Mebis
    • 1
    • 2
    • 3
  1. 1.Faculty of Medicine & Life SciencesHasselt UniversityHasseltBelgium
  2. 2.Department of Medical OncologyJessa HospitalHasseltBelgium
  3. 3.Limburg Oncology CentreJessa HospitalHasseltBelgium
  4. 4.Department of DermatologyJessa HospitalHasseltBelgium

Personalised recommendations