Advertisement

New insights in radiation-induced leukoencephalopathy: a prospective cross-sectional study

  • Flavie Bompaire
  • Marion Lahutte
  • Stephane Buffat
  • Carole Soussain
  • Anne Emmanuelle Ardisson
  • Robert Terziev
  • Magali Sallansonnet-Froment
  • Thierry De Greslan
  • Sébastien Edmond
  • Mehdi Saad
  • Christophe Nioche
  • Thomas Durand
  • Sonia Alamowitch
  • Khe Hoang Xuan
  • Jean Yves Delattre
  • Jean Luc Renard
  • Hervé Taillia
  • Cyrus Chargari
  • Dimitri Psimaras
  • Damien Ricard
Original Article
  • 40 Downloads

Abstract

Background

Radiation-induced leukoencephalopathy (RIL) is the most threatening delayed complication of cerebral radiotherapy (RT) and remains roughly defined by cognitive dysfunction associated with diffuse FLAIR MRI white matter hyperintensities after brain irradiation. We documented clinical, neuropsychological, and radiological aspects of RI in order to refine diagnostic criteria.

Methods

Patients referred to our center for deterioration in cognitive complaint at least 6 months after completing a focal or whole brain RT underwent a systematic cross-sectional assessment including clinical examination, neuropsychological tests, and a standardized MRI protocol. Patients with progressive tumor were excluded.

Results

Forty patients were prospectively enrolled. Of these, 26 had received a focal RT, median dose of 53 Gy (range 50 to 60), and 14 had received a whole brain RT, median dose of 30 Gy. Cognitive complaints, gait apraxia, and urinary troubles were reported in 100, 67, and 38% of cases, respectively. On neuropsychological examination, patients displayed a global and severe cognitive decline through a subcortical frontal mode. The cognitive changes observed were not hippocampic, but related to executive dysfunction. On MRI, 68% of the patients had extensive FLAIR hyperintensities with anterior predominance, 87% had brain atrophy, and 21% had intraparenchymal cysts. T2*-weighted MRI showed small asignal areas in 53% of the patients. These abnormalities are evocative of cerebral small vessel disease. Fractional anisotropy in the corpus callosum correlated with the cognitive evaluation. No differentiation in terms of cognitive and MRI features could be made between patients treated with focal brain RT (glioma) and patients treated with WBRT (for brain metastases or PCNSL).

Conclusions

RIL can be defined by clinical symptoms (subcortical frontal decline, gait apraxia, urinary incontinence) and MRI criteria (cortico-subcortical atrophy, spread FLAIR HI, T2* asignals). This condition mimics a diffuse progressive cerebral small vessel disease triggered by RT, independent of RT protocol.

Keywords

Leukoencephalopathy Radiation therapy Dementia Cerebral small vessel disease 

Notes

Acknowledgements

The authors would like to acknowledge Dr. Loic Feuvret for his work on this paper. He is the radiotherapist that helped to do all the matches between patients MRI and radiotherapy protocol (dedicated to the link between radiotherapy and neurology).

Author contribution

F. Bompaire: Data acquisition and analysis, data interpretation, manuscript redaction

M. Lahutte: MRI realization and analysis

S. Buffat: MRI analysis

C. Soussain: Study design

A.E. Ardisson: Cognitive evaluation realization and analysis

R. Terziev: MRI analysis

M. Sallansonnet-Froment: Clinical analysis

T. De Greslan: Clinical analysis

S. Edmond: Data collection

M. Saad: Clinical analysis

C. Nioche: MRI post-treatment

T. Durand: Cognitive evaluation analysis

S. Alamowitch: Critical revision of manuscript for intellectual content (vascular aspect)

K Hoang Xuan: Critical revision of manuscript for intellectual content (neuro-oncological aspect)

J.Y. Delattre: Critical revision of manuscript for intellectual content (neuro-oncological aspect)

J.L. Renard: Critical revision of manuscript for intellectual content (neuropsychological aspect)

H. Taillia: Critical revision of manuscript for intellectual content (neuropsychological aspect)

C. Chargari: Critical revision of manuscript for intellectual content (manuscript writing)

D. Psimaras: Study supervision

D. Ricard: Study concept and design, study supervision

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

520_2018_4296_MOESM1_ESM.xlsx (17 kb)
ESM 1 (XLSX 17.1 KB)

References

  1. 1.
    Verdecchia A, Baili P, Quaglia A, Kunkler I, Ciampichini R, Berrino F, Micheli A (2008) Patient survival for all cancers combined as indicator of cancer control in Europe. Eur J Pub Health 18(5):527–532CrossRefGoogle Scholar
  2. 2.
    Doolittle ND, Korfel A, Lubow MA, Schorb E, Schlegel U, Rogowski S, Fu R, Dosa E, Illerhaus G, Kraemer DF, Muldoon LL, Calabrese P, Hedrick N, Tyson RM, Jahnke K, Maron LM, Butler RW, Neuwelt EA (2013) Long-term cognitive function, neuroimaging, and quality of life in primary CNS lymphoma. Neurology 81(1):84–92CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374(9701):1639–1651CrossRefGoogle Scholar
  4. 4.
    Omuro AM, Ben-Porat LS, Panageas KS, Kim AK, Correa DD, Yahalom J, Deangelis LM, Abrey LE (2005) Delayed neurotoxicity in primary central nervous system lymphoma. Arch Neurol 62(10):1595–1600CrossRefGoogle Scholar
  5. 5.
    Froklage FE, Oosterbaan LJ, Sizoo EM, de Groot M, Bosma I, Sanchez E, Douw L, Heimans JJ, Reijneveld JC, Lagerwaard FJ, Buter J, Uitdehaag BMJ, Klein M, Postma TJ (2014) Central neurotoxicity of standard treatment in patients with newly-diagnosed high-grade glioma: a prospective longitudinal study. J Neuro-Oncol 116(2):387–394CrossRefGoogle Scholar
  6. 6.
    Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJP, Vermersch P, Steinling M, Valk J (1993) A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114(1):7–12CrossRefGoogle Scholar
  7. 7.
    Farrell C, Chappell F, Armitage PA, Keston P, MacLullich A, Shenkin S, Wardlaw JM (2009) Development and initial testing of normal reference MR images for the brain at ages 65-70 and 75-80 years. Eur Radiol 19(1):177–183CrossRefGoogle Scholar
  8. 8.
    Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O'Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw FE, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge Rv, Pantoni L, Speck O, Stephan BC, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M (2013) STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). STandards for ReportIng vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jurica PJ, Leitten CL, Mattis S (2001) Dementia rating scale-2: professional manual. Lutz, FL: Psychological assessment ressourcesGoogle Scholar
  10. 10.
    Kalafat M, Hugonot-Diener L, Poitrenaud J (2003) Standardisation et étalonnage français du «Mini Mental State» (MMS) version GRECO. Rev Neuropsycol 13(2):209–236Google Scholar
  11. 11.
    Van der Linden M, Coyette F, Poitrenaud J et al (2004) L’épreuve de rappel libre/rappel indicé à 16 items (RL/RI-16). In: Van der Liden M, Adam S, Agniel A et al (eds) L’évaluation des troubles de la mémoire: Présentation de quatre tests de mémoire épisodique (avec leur étalonnage). Solal, MarseilleGoogle Scholar
  12. 12.
    Godefroy O, et le GREFEX (eds) (2008) Fonctions exécutives et pathologies neurologiques et psychiatriques. Solal, MarseilleGoogle Scholar
  13. 13.
    Deloche G, Hannequin D (1997) Test de denomination orale d’images-DO80. ECPA, ParisGoogle Scholar
  14. 14.
    Gronwall DMA (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44:367–373CrossRefGoogle Scholar
  15. 15.
    Sarrazin M, de Rotrou J, Fabrigoule et al (2007) Amnestic syndrome of the medial temporal type identifies prodromal AD. A longitudinal study. Neurology 69:1859–1867CrossRefGoogle Scholar
  16. 16.
    Bammer R, Augustin M, Strasser-Fuchs S, Seifert T, Kapeller P, Stollberger R, Ebner F, Hartung HP, Fazekas F (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44(4):583–591CrossRefGoogle Scholar
  17. 17.
    Correa DD, Shi W, Abrey LE, DeAngelis LM, Omuro AM, Deutsch MB, Thaler HT (2012) Cognitive functions in primary CNS lymphoma after single or combined modality regimens. Neuro-Oncology 14(1):101–108CrossRefGoogle Scholar
  18. 18.
    Karunamuni RA, Moore KL, Seibert TM, Li N, White NS, Bartsch H, Carmona R, Marshall D, McDonald CR, Farid N, Krishnan A, Kuperman J, Mell LK, Brewer J, Dale AM, Moiseenko V, Hattangadi-Gluth JA (2016) Radiation sparing of cerebral cortex in brain tumor patients using quantitative neuroimaging. Radiother Oncol 118(1):29–34CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Seibert TM, Karunamuni R, Bartsch H, Kaifi S, Krishnan AP, Dalia Y, Burkeen J, Murzin V, Moiseenko V, Kuperman J, White NS, Brewer JB, Farid N, McDonald CR, Hattangadi-Gluth JA (2017) Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. Int J Radiat Oncol Biol Phys 97(2):263–269CrossRefGoogle Scholar
  20. 20.
    Seibert TM, Karunamuni R, Kaifi S, Burkeen J, Connor M, Krishnan AP, White NS, Farid N, Bartsch H, Murzin V, Nguyen TT, Moiseenko V, Brewer JB, McDonald CR, Dale AM, Hattangadi-Gluth JA (2017) Cerebral cortex regions selectively vulnerable to radiation dose-dependent atrophy. Int J Radiat Oncol Biol Phys 97(5):910–918CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Román GC, Erkinjuntti T, Wallin A, Pantoni L, Chui HC (2002) Subcortical ischaemic vascular dementia. Lancet Neurol 1(7):426–436CrossRefGoogle Scholar
  22. 22.
    Royall DR (2000) Executive cognitive impairment: a novel perspective on dementia. Neuroepidemiology 19(6):293–299CrossRefGoogle Scholar
  23. 23.
    Wolfe N, Linn R, Babikian VL, Knoefel JE, Albert ML (1990) Frontal systems impairment following multiple lacunar infarcts. Arch Neurol 47(2):129–132CrossRefGoogle Scholar
  24. 24.
    Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatr Clin Neurosci 6(4):358–370CrossRefGoogle Scholar
  25. 25.
    Jokinen H, Lipsanen J, Schmidt R, Fazekas F, Gouw AA, van der Flier WM, Barkhof F, Madureira S, Verdelho A, Ferro JM, Wallin A, Pantoni L, Inzitari D, Erkinjuntti T, On behalf of the LADIS Study Group, LADIS study group (2012) Brain atrophy accelerates cognitive decline in cerebral small vessel disease: the LADIS study. Neurology 78(22):1785–1792CrossRefGoogle Scholar
  26. 26.
    Van Norden AG, de Laat KF, van Dijk EJ et al (2012) Diffusion tensor imaging and cognition in cerebral small vessel disease: the RUN DMC study. Biochim Biophys Acta 1822(3):401–407CrossRefGoogle Scholar
  27. 27.
    Nitkunan A, Lanfranconi S, Charlton RA et al (2011) Brain atrophy and cerebral small vessel disease: a prospective follow-up study. Stroke 42(1):133–138CrossRefGoogle Scholar
  28. 28.
    Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L, Cao Y (2008) Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 70(4):1002–1010CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Connor M, Karunamuni R, McDonald C, Seibert T, White N, Moiseenko V, Bartsch H, Farid N, Kuperman J, Krishnan A, Dale A, Hattangadi-Gluth JA (2017) Regional susceptibility to dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 123(2):209–217CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Vigliani MC, Duyckaerts C, Hauw JJ, Poisson M, Magdelenat H, Delattre JY (1999) Dementia following treatment of brain tumors with radiotherapy administered alone or in combination with nitrosourea-based chemotherapy: a clinical and pathological study. J Neuro-Oncol 41(2):137–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Flavie Bompaire
    • 1
  • Marion Lahutte
    • 2
  • Stephane Buffat
    • 3
    • 4
  • Carole Soussain
    • 5
  • Anne Emmanuelle Ardisson
    • 1
  • Robert Terziev
    • 6
  • Magali Sallansonnet-Froment
    • 1
  • Thierry De Greslan
    • 1
  • Sébastien Edmond
    • 1
  • Mehdi Saad
    • 1
    • 3
  • Christophe Nioche
    • 2
  • Thomas Durand
    • 1
    • 3
  • Sonia Alamowitch
    • 7
    • 8
  • Khe Hoang Xuan
    • 6
    • 8
    • 9
    • 10
    • 11
    • 12
  • Jean Yves Delattre
    • 6
    • 8
    • 9
    • 10
    • 11
    • 12
  • Jean Luc Renard
    • 1
  • Hervé Taillia
    • 1
    • 13
  • Cyrus Chargari
    • 4
    • 13
    • 14
    • 15
  • Dimitri Psimaras
    • 6
  • Damien Ricard
    • 1
    • 3
    • 13
  1. 1.Service de Neurologie, HIA PercyClamartFrance
  2. 2.Service de Radiologie, HIA PercyClamartFrance
  3. 3.UMR8257 MD4 Cognac G, CNRS, Service de Santé des ArméesUniversité Paris DescartesParisFrance
  4. 4.Institut de Recherche Biomédicale des Armées, Place du Général Valérie AndréBrétigny-sur-OrgeFrance
  5. 5.Centre René Huguenin, Service d’HématologieSaint-CloudFrance
  6. 6.Service de Neurologie 2-MazarinGroupe Hospitalier Pitié-SalpêtrièreParisFrance
  7. 7.Stroke Unit, Department of NeurologySaint Antoine University Hospital, AP-HPParisFrance
  8. 8.Sorbonne UniversitésParisFrance
  9. 9.UPMC Univ Paris 06ParisFrance
  10. 10.UM 75, ICMParisFrance
  11. 11.Inserm, U 1127, ICM, ParisParisFrance
  12. 12.CNRS, UMR 7225, ICM, ParisParisFrance
  13. 13.Ecole du Val de GrâceParisFrance
  14. 14.Radiotherapy DepartmentGustave Roussy Cancer CampusVillejuifFrance
  15. 15.INSERM 1030, Molecular RadiotherapyVillejuifFrance

Personalised recommendations