Advertisement

Supportive Care in Cancer

, Volume 24, Issue 6, pp 2781–2792 | Cite as

Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations

  • Judith A. E. M. Zecha
  • Judith E. Raber-Durlacher
  • Raj G. Nair
  • Joel B. Epstein
  • Stephen T. Sonis
  • Sharon Elad
  • Michael R. Hamblin
  • Andrei Barasch
  • Cesar A. Migliorati
  • Dan M. J. Milstein
  • Marie-Thérèse Genot
  • Liset Lansaat
  • Ron van der Brink
  • Josep Arnabat-Dominguez
  • Lisette van der Molen
  • Irene Jacobi
  • Judi van Diessen
  • Jan de Lange
  • Ludi E. Smeele
  • Mark M. Schubert
  • René-Jean BensadounEmail author
Review Article

Abstract

Purpose

There is a large body of evidence supporting the efficacy of low level laser therapy (LLLT), more recently termed photobiomodulation (PBM), for the management of oral mucositis (OM) in patients undergoing radiotherapy for head and neck cancer (HNC). Recent advances in PBM technology, together with a better understanding of mechanisms involved, may expand the applications for PBM in the management of other complications associated with HNC treatment. This article (part 1) describes PBM mechanisms of action, dosimetry, and safety aspects and, in doing so, provides a basis for a companion paper (part 2) which describes the potential breadth of potential applications of PBM in the management of side-effects of (chemo)radiation therapy in patients being treated for HNC and proposes PBM parameters.

Methods

This study is a narrative non-systematic review.

Results

We review PBM mechanisms of action and dosimetric considerations. Virtually, all conditions modulated by PBM (e.g., ulceration, inflammation, lymphedema, pain, fibrosis, neurological and muscular injury) are thought to be involved in the pathogenesis of (chemo)radiation therapy-induced complications in patients treated for HNC. The impact of PBM on tumor behavior and tumor response to treatment has been insufficiently studied. In vitro studies assessing the effect of PBM on tumor cells report conflicting results, perhaps attributable to inconsistencies of PBM power and dose. Nonetheless, the biological bases for the broad clinical activities ascribed to PBM have also been noted to be similar to those activities and pathways associated with negative tumor behaviors and impeded response to treatment. While there are no anecdotal descriptions of poor tumor outcomes in patients treated with PBM, confirming its neutrality with respect to cancer responsiveness is a critical priority.

Conclusion

Based on its therapeutic effects, PBM may have utility in a broad range of oral, oropharyngeal, facial, and neck complications of HNC treatment. Although evidence suggests that PBM using LLLT is safe in HNC patients, more research is imperative and vigilance remains warranted to detect any potential adverse effects of PBM on cancer treatment outcomes and survival.

Keywords

Low level laser therapy Low level light therapy Photobiomodulation Mucositis Orofacial complications Chemotherapy Radiation therapy Head and neck cancer Safety LLLT and PBM 

Notes

Conflict of interest

Judith E. Raber-Durlacher, Raj G. Nair, Joel B. Epstein, Ron van der Brink, Josep Arnabat Dominguez, and Rene-Jean Bensadoun have received travel expenses and hotel accommodation from THOR Photomedicine Ltd. UK. Raj Nair has received an honorarium from THOR, UK. Michael R Hamblin was supported by US NIH grant R01AI050875. All the other authors declare that they have no conflict of interest.

References

  1. 1.
    Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, Popplewell L, Maghami E (2012) Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin 62:400–422. doi: 10.3322/caac.21157 CrossRefPubMedGoogle Scholar
  2. 2.
    Rosenthal DI, Lewin JS, Eisbruch A (2006) Prevention and treatment of dysphagia and aspiration after chemoradiation for head and neck cancer. J. Clin.Oncol. 24:2636–2643. doi: 10.1200/JCO.2006.06.0079 CrossRefPubMedGoogle Scholar
  3. 3.
    van der Molen L, van Rossum MA, Burkhead LM, Smeele LE, Hilgers FJ (2009) Functional outcomes and rehabilitation strategies in patients treated with chemoradiotherapy for advanced head and neck cancer: a systematic review. Eur Arch Otorhinolaryngol 266:889–900. doi: 10.1007/s00405-008-0817-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Rapidis AD, Vermorken JB, Bourhis J (2008) Targeted therapies in head and neck cancer: past, present and future. Rev Recent Clin Trials 3:156–166CrossRefPubMedGoogle Scholar
  5. 5.
    Watters AL, Epstein JB, Agulnik M (2011) Oral complications of targeted cancer therapies: a narrative literature review. Oral Oncol 47:441–448. doi: 10.1016/j.oraloncology.2011.03.028 CrossRefPubMedGoogle Scholar
  6. 6.
    Lacouture ME, Anadkat MJ, Bensadoun RJ, Bryce J, Chan A, Epstein JB, Eaby-Sandy B, Murphy BA (2011) Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities. Support. Care Cancer 19:1079–1095. doi: 10.1007/s00520-011-1197-6 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP (2003) Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 14:199–212CrossRefPubMedGoogle Scholar
  8. 8.
    WALT/NAALT (September 9–12 2014) Photobiomodulation: mainstream medicine and beyond. WALT Biennial Congress and NAALT Annual Conference, Arlington Virginia USAGoogle Scholar
  9. 9.
    Mester E, Spiry T, Szende B, Tota JG (1971) Effect of laser rays on wound healing. Am J Surg 122:532–535CrossRefPubMedGoogle Scholar
  10. 10.
    Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R, Hayam G, Dror U, Gepstein L, Wolf T, Haudenschild C, Haim SB (2001) Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 103:296–301CrossRefPubMedGoogle Scholar
  11. 11.
    Rizzi CF, Mauriz JL, Freitas Correa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, Gonzalez-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38:704–713. doi: 10.1002/lsm.20371 CrossRefPubMedGoogle Scholar
  12. 12.
    Barolet D, Boucher A (2010) Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: a case series. Lasers Surg Med 42:597–601. doi: 10.1002/lsm.20952 CrossRefPubMedGoogle Scholar
  13. 13.
    Oliveira FA, Moraes AC, Paiva AP, Schinzel V, Correa-Costa M, Semedo P, Castoldi A, Cenedeze MA, Oliveira RS, Bastos MG, Camara NO, Sanders-Pinheiro H (2012) Low-level laser therapy decreases renal interstitial fibrosis. Photomed Laser Surg 30:705–713. doi: 10.1089/pho.2012.3272 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Meneguzzo DT, Lopes LA, Pallota R, Soares-Ferreira L, Lopes-Martins RA, Ribeiro MS (2013) Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci 28:973–980. doi: 10.1007/s10103-012-1163-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Luo L, Sun Z, Zhang L, Li X, Dong Y, Liu TC (2013) Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-beta1 in skeletal muscle during the repair process. Lasers Med Sci 28:725–734. doi: 10.1007/s10103-012-1133-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Bjordal JM, Couppe C, Chow RT, Tuner J, Ljunggren EA (2003) A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Aust. J. Physiother. 49:107–116CrossRefPubMedGoogle Scholar
  17. 17.
    Bjordal JM, Johnson MI, Iversen V, Aimbire F, Lopes-Martins RA (2006) Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials. Photomed Laser Surg 24:158–168. doi: 10.1089/pho.2006.24.158 CrossRefPubMedGoogle Scholar
  18. 18.
    Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM (2009) Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet 374:1897–1908. doi: 10.1016/S0140-6736(09)61522-1 CrossRefPubMedGoogle Scholar
  19. 19.
    Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29:365–381. doi: 10.1089/pho.2010.2928 CrossRefPubMedGoogle Scholar
  20. 20.
    Clarkson JE, Worthington HV, Furness S, McCabe M, Khalid T and Meyer S (2010) Interventions for treating oral mucositis for patients with cancer receiving treatment. Cochrane. Database. Syst.Rev.:CD001973. doi:10.1002/14651858.CD001973.pub4Google Scholar
  21. 21.
    Worthington HV, Clarkson JE, Bryan G, Furness S, Glenny AM, Littlewood A, McCabe MG, Meyer S and Khalid T (2011) Interventions for preventing oral mucositis for patients with cancer receiving treatment. Cochrane. Database. Syst.Rev.:CD000978. doi:10.1002/14651858.CD000978.pub5Google Scholar
  22. 22.
    Bjordal JM, Bensadoun RJ, Tuner J, Frigo L, Gjerde K, Lopes-Martins RA (2011) A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer 19:1069–1077. doi: 10.1007/s00520-011-1202-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Bensadoun RJ, Nair RG (2012) Low-level laser therapy in the prevention and treatment of cancer therapy-induced mucositis: 2012 state of the art based on literature review and meta-analysis. Curr Opin Oncol 24:363–370. doi: 10.1097/CCO.0b013e328352eaa3 CrossRefPubMedGoogle Scholar
  24. 24.
    Migliorati C, Hewson I, Lalla RV, Antunes HS, Estilo CL, Hodgson B, Lopes NN, Schubert MM, Bowen J, Elad S (2013) Systematic review of laser and other light therapy for the management of oral mucositis in cancer patients. Support Care Cancer 21:333–341. doi: 10.1007/s00520-012-1605-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Oberoi S, Zamperlini-Netto G, Beyene J, Treister NS, Sung L (2014) Effect of prophylactic low level laser therapy on oral mucositis: a systematic review and meta-analysis. PLoS one 9:e107418. doi: 10.1371/journal.pone.0107418 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hodgson BD, Margolis DM, Salzman DE, Eastwood D, Tarima S, Williams LD, Sande JE, Vaughan WP, Whelan HT (2012) Amelioration of oral mucositis pain by NASA near-infrared light-emitting diodes in bone marrow transplant patients. Support Care Cancer 20:1405–1415. doi: 10.1007/s00520-011-1223-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 31:163–168. doi: 10.1089/pho.2012.3284 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hashmi JT, Huang YY, Sharma SK, Kurup DB, De TL, Carroll JD, Hamblin MR (2010) Effect of pulsing in low-level light therapy. Lasers Surg Med 42:450–466. doi: 10.1002/lsm.20950 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hawkins D, Abrahamse H (2005) Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Surg 23:251–259. doi: 10.1089/pho.2005.23.251 CrossRefPubMedGoogle Scholar
  30. 30.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB.Life 62:607–610. doi:10.1002/iub.359Google Scholar
  31. 31.
    Khakh BS, Burnstock G (2009) The double life of ATP. Sci.Am. 301(84–90):92Google Scholar
  32. 32.
    Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem.J. 265:659–665CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Antunes F, Boveris A and Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc.Natl.Acad.Sci.U.S.A 101:16774–16779. doi: 10.1073/pnas.0405368101
  34. 34.
    Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann.Biomed.Eng 40:516–533. doi: 10.1007/s10439-011-0454-7 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed.Laser Surg. 23:355–361. doi: 10.1089/pho.2005.23.355 CrossRefPubMedGoogle Scholar
  36. 36.
    Karu T (1989) Photobiology of low-power laser effects. Health Phys 56:691–704CrossRefPubMedGoogle Scholar
  37. 37.
    Assis L, Moretti AI, Abrahao TB, Cury V, Souza HP, Hamblin MR, Parizotto NA (2012) Low-level laser therapy (808 nm) reduces inflammatory response and oxidative stress in rat tibialis anterior muscle after cryolesion. Lasers Surg.Med. 44:726–735. doi: 10.1002/lsm.22077 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Karu TI, Pyatibrat LV, Kalendo GS (2004) Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem.Photobiol.Sci. 3:211–216. doi: 10.1039/b306126d CrossRefPubMedGoogle Scholar
  39. 39.
    Fujimaki Y, Shimoyama T, Liu Q, Umeda T, Nakaji S, Sugawara K (2003) Low-level laser irradiation attenuates production of reactive oxygen species by human neutrophils. J.Clin.Laser Med.Surg. 21:165–170. doi: 10.1089/104454703321895635 CrossRefPubMedGoogle Scholar
  40. 40.
    Silveira PC, da Silva LA, Pinho CA, De Souza PS, Ronsani MM, Scheffer DL, Pinho RA (2013) Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med.Sci. 28:431–436. doi: 10.1007/s10103-012-1075-6 CrossRefPubMedGoogle Scholar
  41. 41.
    de Lima FM, Villaverde AB, Albertini R, Correa JC, Carvalho RL, Munin E, Araujo T, Silva JA, Aimbire F (2011) Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg.Med. 43:410–420. doi: 10.1002/lsm.21053 CrossRefPubMedGoogle Scholar
  42. 42.
    Lohr NL, Keszler A, Pratt P, Bienengraber M, Warltier DC, Hogg N (2009) Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: potential role in cardioprotection. J.Mol.Cell Cardiol. 47:256–263. doi: 10.1016/j.yjmcc.2009.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lopes NN, Plapler H, Chavantes MC, Lalla RV, Yoshimura EM, Alves MT (2009) Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters: evaluation of two low-intensity laser protocols. Support Care Cancer 17:1409–1415. doi: 10.1007/s00520-009-0603-9 CrossRefPubMedGoogle Scholar
  44. 44.
    Lopes NN, Plapler H, Lalla RV, Chavantes MC, Yoshimura EM, da Silva MA, Alves MT (2010) Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters. Lasers Surg.Med. 42:546–552. doi: 10.1002/lsm.20920 CrossRefPubMedGoogle Scholar
  45. 45.
    Mendenhall WM, Parsons JT, Buatti JM, Stringer SP, Million RR, Cassisi NJ (1995) Advances in radiotherapy for head and neck cancer. Semin.Surg.Oncol. 11:256–264CrossRefPubMedGoogle Scholar
  46. 46.
    Mancini ML, Sonis ST (2014) Mechanisms of cellular fibrosis associated with cancer regimen-related toxicities. Front Pharmacol 5:51. doi: 10.3389/fphar.2014.00051 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, Gonzalez-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37:293–300. doi: 10.1002/lsm.20225 CrossRefPubMedGoogle Scholar
  48. 48.
    Lev-Tov H, Brody N, Siegel D, Jagdeo J (2013) Inhibition of fibroblast proliferation in vitro using low-level infrared light-emitting diodes. Dermatol.Surg. 39:422–425. doi: 10.1111/dsu.12087 CrossRefPubMedGoogle Scholar
  49. 49.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose.Response 7:358–383. doi: 10.2203/dose-response.09-027.Hamblin CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose.Response 9:602–618. doi: 10.2203/dose-response.11-009.Hamblin CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J.Clin.Laser Med.Surg. 19:29–33. doi: 10.1089/104454701750066910 CrossRefPubMedGoogle Scholar
  52. 52.
    (WALT) WAfLT www.waltza.co.za.
  53. 53.
    Bjordal JM (2012) Low level laser therapy (LLLT) and World Association for Laser Therapy (WALT) dosage recommendations. Photomed Laser Surg 30:61–62. doi: 10.1089/pho.2012.9893 CrossRefPubMedGoogle Scholar
  54. 54.
    Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed.Laser Surg. 29:785–787. doi: 10.1089/pho.2011.9895 CrossRefPubMedGoogle Scholar
  55. 55.
    Guirro RR, Weis LC (2009) Radiant power determination of low-level laser therapy equipment and characterization of its clinical use procedures. Photomed.Laser Surg. 27:633–639. doi: 10.1089/pho.2008.2361 CrossRefPubMedGoogle Scholar
  56. 56.
    Gomes Henriques AC, Ginani F, Oliveira RM, Keesen TS, Galvao Barboza CA, Oliveira Rocha HA, de Castro JF, Della Coletta R, de Almeida FR (2014) Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells. Lasers Med Sci 29:1385–1395. doi: 10.1007/s10103-014-1535-2 PubMedGoogle Scholar
  57. 57.
    Simpson DR, Mell LK, Cohen EE (2015) Targeting the PI3K/AKT/mTOR pathway in squamous cell carcinoma of the head and neck. Oral Oncol 51:291–298. doi: 10.1016/j.oraloncology.2014.11.012 CrossRefPubMedGoogle Scholar
  58. 58.
    Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH, Li Y (2013) Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 4:e875. doi: 10.1038/cddis.2013.407 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nagata Y, Takahashi A, Ohnishi K, Ota I, Ohnishi T, Tojo T, Taniguchi S (2010) Effect of rapamycin, an mTOR inhibitor, on radiation sensitivity of lung cancer cells having different p53 gene status. Int J Oncol 37:1001–1010CrossRefPubMedGoogle Scholar
  60. 60.
    Pellicioli AC, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM (2014) Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt 19:028002. doi: 10.1117/1.jbo.19.2.028002 CrossRefPubMedGoogle Scholar
  61. 61.
    Sperandio FF, Giudice FS, Correa L, Pinto DS Jr, Hamblin MR, de Sousa SC (2013) Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway. J.Biophotonics. doi: 10.1002/jbio.201300015
  62. 62.
    Pardali K, Moustakas A (2007) Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62. doi: 10.1016/j.bbcan.2006.06.004 PubMedGoogle Scholar
  63. 63.
    Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821. doi: 10.1038/nrc1208 CrossRefPubMedGoogle Scholar
  64. 64.
    Prime SS, Davies M, Pring M, Paterson IC (2004) The role of TGF-beta in epithelial malignancy and its relevance to the pathogenesis of oral cancer (part II). Crit Rev Oral Biol Med 15:337–347CrossRefPubMedGoogle Scholar
  65. 65.
    Hwang YS, Park KK, Chung WY (2014) Stromal transforming growth factor-beta 1 is crucial for reinforcing the invasive potential of low invasive cancer. Arch Oral Biol 59:687–694. doi: 10.1016/j.archoralbio.2014.03.017 CrossRefPubMedGoogle Scholar
  66. 66.
    Dang Y, Liu B, Liu L, Ye X, Bi X, Zhang Y, Gu J (2011) The 800-nm diode laser irradiation induces skin Collagen synthesis by stimulating TGF-beta/smad signaling pathway. Lasers Med Sci 26:837–843. doi: 10.1007/s10103-011-0985-z CrossRefPubMedGoogle Scholar
  67. 67.
    Chen YK, Huang AH, Cheng PH, Yang SH, Lin LM (2013) Overexpression of smad proteins, especially Smad7, in oral epithelial dysplasias. Clin Oral Investig 17:921–932. doi: 10.1007/s00784-012-0756-7 CrossRefPubMedGoogle Scholar
  68. 68.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290. doi: 10.1038/sj.onc.1210421 CrossRefPubMedGoogle Scholar
  69. 69.
    Cui X, Li S, Li T, Pang X, Zhang S, Jin J, Hu J, Liu C, Yang L, Peng H, Jiang J, Liang W, Suo J, Li F, Chen Y (2014) Significance of elevated ERK expression and its positive correlation with EGFR in Kazakh patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:2382–2391PubMedPubMedCentralGoogle Scholar
  70. 70.
    Feng J, Zhang Y, Xing D (2012) Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway. Cell Signal 24:1116–1125. doi: 10.1016/j.cellsig.2012.01.013 CrossRefPubMedGoogle Scholar
  71. 71.
    Kawano Y, Utsunomiya-Kai Y, Kai K, Miyakawa I, Ohshiro T, Narahara H (2012) The production of VEGF involving MAP kinase activation by low level laser therapy in human granulosa cells. Laser Ther 21:269–274. doi: 10.5978/islsm.12-OR-15 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, Bala Singh S (2014) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 9999. doi: 10.1002/jbio.201400058
  73. 73.
    Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2013) Regulation of miRNA expression by low-level laser therapy (LLLT) and photodynamic therapy (PDT). Int J Mol Sci 14:13542–13558. doi: 10.3390/ijms140713542 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Png KJ, Halberg N, Yoshida M, Tavazoie SF (2012) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481:190–194. doi: 10.1038/nature10661 CrossRefGoogle Scholar
  75. 75.
    Song S, Zhou F, Chen WR (2012) Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. J.Neuroinflammation. 9:219. doi: 10.1186/1742-2094-9-219 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Shabbir M, Ryten M, Thompson C, Mikhailidis D and Burnstock G (2008) Purinergic receptor-mediated effects of ATP in high-grade bladder cancer. BJU.Int. 101:106–112. doi:10.1111/j.1464-410X.2007.07286.xGoogle Scholar
  77. 77.
    Marchesini R, Dasdia T, Melloni E, Rocca E (1989) Effect of low-energy laser irradiation on colony formation capability in different human tumor cells in vitro. Lasers Surg.Med. 9:59–62CrossRefPubMedGoogle Scholar
  78. 78.
    Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Low-level 809 nm GaAlAs laser irradiation increases the proliferation rate of human laryngeal carcinoma cells in vitro. Lasers Med.Sci. 18:100–103. doi: 10.1007/s10103-003-0265-7 CrossRefPubMedGoogle Scholar
  79. 79.
    de Castro JL, Pinheiro AL, Werneck CE, Soares CP (2005) The effect of laser therapy on the proliferation of oral KB carcinoma cells: an in vitro study. Photomed.Laser Surg. 23:586–589. doi: 10.1089/pho.2005.23.586 CrossRefPubMedGoogle Scholar
  80. 80.
    Schaffer M, Sroka R, Fuchs C, Schrader-Reichardt U, Schaffer PM, Busch M and Duhmke E (1997) Biomodulative effects induced by 805 nm laser light irradiation of normal and tumor cells. J.Photochem.Photobiol.B 40:253–257.Google Scholar
  81. 81.
    Pinheiro AL, Carneiro NS, Vieira AL, Brugnera A Jr, Zanin FA, Barros RA, Silva PS (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J.Clin.Laser Med.Surg. 20:23–26. doi: 10.1089/104454702753474977
  82. 82.
    Werneck CE, Pinheiro AL, Pacheco MT, Soares CP, de Castro JL (2005) Laser light is capable of inducing proliferation of carcinoma cells in culture: a spectroscopic in vitro study. Photomed.Laser Surg. 23:300–303. doi: 10.1089/pho.2005.23.300 CrossRefPubMedGoogle Scholar
  83. 83.
    Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed.Laser Surg. 25:275–280. doi: 10.1089/pho.2007.2055 CrossRefPubMedGoogle Scholar
  84. 84.
    Powell K, Low P, McDonnell PA, Laakso EL, Ralph SJ (2010) The effect of laser irradiation on proliferation of human breast carcinoma, melanoma, and immortalized mammary epithelial cells. Photomed.Laser Surg. 28:115–123. doi: 10.1089/pho.2008.2445 CrossRefPubMedGoogle Scholar
  85. 85.
    Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin.Orthod.Res. 4:3–14CrossRefPubMedGoogle Scholar
  86. 86.
    Liu YH, Cheng CC, Ho CC, Pei RJ, Lee KY, Yeh KT, Chan Y, Lai YS (2004) Effects of diode 808 nm GaAlAs low-power laser irradiation on inhibition of the proliferation of human hepatoma cells in vitro and their possible mechanism. Res Commun Mol Pathol Pharmacol 115-116:185–201PubMedGoogle Scholar
  87. 87.
    Sroka R, Schaffer M, Fuchs C, Pongratz T, Schrader-Reichard U, Busch M, Schaffer PM, Duhmke E, Baumgartner R (1999) Effects on the mitosis of normal and tumor cells induced by light treatment of different wavelengths. Lasers Surg.Med. 25:263–271. doi: 10.1002/(SICI)1096-9101(1999)25:3<263::AID-LSM11>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  88. 88.
    Murayama H, Sadakane K, Yamanoha B, Kogure S (2012) Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci 27:87–93. doi: 10.1007/s10103-011-0924-z CrossRefPubMedGoogle Scholar
  89. 89.
    Al-Watban FA, Andres BL (2012) Laser biomodulation of normal and neoplastic cells. Lasers Med Sci 27:1039–1043. doi: 10.1007/s10103-011-1040-9 CrossRefPubMedGoogle Scholar
  90. 90.
    Crous AM, Abrahamse H (2013) Lung cancer stem cells and low-intensity laser irradiation: a potential future therapy? Stem Cell Res Ther 4:129. doi: 10.1186/scrt340 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Schartinger VH, Galvan O, Riechelmann H, Dudas J (2012) Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Support. Care Cancer 20:523–529. doi: 10.1007/s00520-011-1113-0 CrossRefPubMedGoogle Scholar
  92. 92.
    Tsai SR, Yin R, Huang YY, Sheu BC, Lee SC, Hamblin MR (2015) Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP. Photodiagn Photodyn Ther 12:123–130. doi: 10.1016/j.pdpdt.2014.10.009 CrossRefGoogle Scholar
  93. 93.
    Barasch A, Raber-Durlacher J, Epstein JB, Carroll J (2015) Effects of pre-radiation exposure to LLLT of normal and malignant cells. Support Care Cancer. doi: 10.1007/s00520-015-3051-8 PubMedGoogle Scholar
  94. 94.
    Mester E, Szende B, Gartner P (1968) The effect of laser beams on the growth of hair in mice. RadiobiolRadiother(Berl) 9:621–626Google Scholar
  95. 95.
    de CMJ, Pinheiro AN, de Oliveira SC, Aciole GT, Sousa JA, Canguss MC and Dos Santos JN (2011) Influence of laser phototherapy (lambda 660 nm) on the outcome of oral chemical carcinogenesis on the hamster cheek pouch model: histological study. Photomed.Laser Surg. 29:741–745. doi: 10.1089/pho.2010.2896
  96. 96.
    Frigo L, Luppi JS, Favero GM, Maria DA, Penna SC, Bjordal JM, Bensadoun RJ, Lopes-Martins RA (2009) The effect of low-level laser irradiation (In-Ga-Al-AsP—660 nm) on melanoma in vitro and in vivo. BMC.Cancer 9:404. doi: 10.1186/1471-2407-9-404 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Myakishev-Rempel M, Stadler I, Brondon P, Axe DR, Friedman M, Nardia FB, Lanzafame R (2012) A preliminary study of the safety of red light phototherapy of tissues harboring cancer. Photomed.Laser Surg. 30:551–558. doi: 10.1089/pho.2011.3186 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Schaffer M, Bonel H, Sroka R, Schaffer PM, Busch M, Reiser M, Duhmke E (2000) Effects of 780 nm diode laser irradiation on blood microcirculation: preliminary findings on time-dependent T1-weighted contrast-enhanced magnetic resonance imaging (MRI). J Photochem Photobiol B 54:55–60CrossRefPubMedGoogle Scholar
  99. 99.
    Antunes HS, Herchenhorn D, Small IA, Araujo CM, Viegas CM, Cabral E, Rampini MP, Rodrigues PC, Silva TG, Ferreira EM, Dias FL, Ferreira CG (2013) Phase III trial of low-level laser therapy to prevent oral mucositis in head and neck cancer patients treated with concurrent chemoradiation. Radiother Oncol 109:297–302. doi: 10.1016/j.radonc.2013.08.010 CrossRefPubMedGoogle Scholar
  100. 100.
    Liu TC, Zhang J, Li XE (2013) The balance between normal and tumor tissues in phototherapy of tissues harboring cancer. Photomed Laser Surg 31:93–94. doi: 10.1089/pho.2012.3355 CrossRefPubMedGoogle Scholar
  101. 101.
    Sonis ST, Hashemi S, Epstein JB, Nair RG, Raber-Durlacher JE (2016) Could the biological robustness of low level laser therapy (Photobiomodulation) impact its use in the management of mucositis in head and neck cancer patients. Oral Oncol.54:7–14. doi:: 10.1016/j.oraloncology.2016.01.005

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Judith A. E. M. Zecha
    • 1
  • Judith E. Raber-Durlacher
    • 1
    • 2
  • Raj G. Nair
    • 3
  • Joel B. Epstein
    • 4
    • 5
  • Stephen T. Sonis
    • 6
  • Sharon Elad
    • 7
  • Michael R. Hamblin
    • 8
    • 9
    • 10
  • Andrei Barasch
    • 11
  • Cesar A. Migliorati
    • 12
  • Dan M. J. Milstein
    • 1
  • Marie-Thérèse Genot
    • 13
  • Liset Lansaat
    • 14
  • Ron van der Brink
    • 15
  • Josep Arnabat-Dominguez
    • 16
  • Lisette van der Molen
    • 14
  • Irene Jacobi
    • 14
  • Judi van Diessen
    • 17
  • Jan de Lange
    • 1
  • Ludi E. Smeele
    • 1
    • 14
  • Mark M. Schubert
    • 18
  • René-Jean Bensadoun
    • 19
    Email author
  1. 1.Department of Oral and Maxillofacial Surgery, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Medical Dental Interaction and Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and VU UniversityAmsterdamThe Netherlands
  3. 3.Department of Haematology and Oncology/Cancer ServicesGold Coast University Hospital, Queensland HealthGold CoastAustralia
  4. 4.Samuel Oschin Comprehensive Cancer InstituteCedars-Sinai Medical CenterLos AngelesUSA
  5. 5.Division of Otolaryngology and Head and Neck SurgeryCity of HopeDuarteUSA
  6. 6.Division of Oral MedicineBrigham and Women’s Hospital and the Dana-Farber Cancer Institute and Biomodels LLCBostonUSA
  7. 7.Division of Oral Medicine, Eastman Institute for Oral Health, and Wilmot Cancer CenterUniversity of Rochester Medical CenterRochesterUSA
  8. 8.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  9. 9.Department of DermatologyHarvard Medical SchoolBostonUSA
  10. 10.Harvard-MIT Division of Health Science and TechnologyCambridgeUSA
  11. 11.Weill Cornell Medical CenterDivision of OncologyNew YorkUSA
  12. 12.Department of Diagnostic Sciences and Oral MedicineUniversity of Tennessee Health Science Center, College of DentistryMemphisUSA
  13. 13.Laser Therapy Unit, Institut Jules BordetCentre des Tumeurs de l’Université Libre de BruxellesBrusselsBelgium
  14. 14.Antoni van Leeuwenhoek Department of Head and Neck Oncology and SurgeryNetherlands Cancer InstituteAmsterdamThe Netherlands
  15. 15.City of HopeDuarteUSA
  16. 16.Department of Oral Surgery, Faculty of DentistryUniversity of BarcelonaBarcelonaSpain
  17. 17.Antoni van Leeuwenhoek Department Radiation Oncology AmsterdamNetherlands Cancer InstituteAmsterdamThe Netherlands
  18. 18.Seattle Cancer Care Alliance (SCCA)SeattleUSA
  19. 19.World Association for Laser Therapy (WALT) Scientific SecretaryCentre de Haute Energie (CHE)NiceFrance

Personalised recommendations