Supportive Care in Cancer

, Volume 24, Issue 2, pp 605–614 | Cite as

Comparison of subgroups of breast cancer patients on pain and co-occurring symptoms following chemotherapy

  • Dale J. Langford
  • Steven M. Paul
  • Bruce Cooper
  • Kord M. Kober
  • Judy Mastick
  • Michelle Melisko
  • Jon D. Levine
  • Fay Wright
  • Marilyn J. Hammer
  • Frances Cartwright
  • Kathryn A. Lee
  • Bradley E. Aouizerat
  • Christine Miaskowski
Original Article



The purposes of this study, in a sample of women with breast cancer receiving chemotherapy (CTX), were to identify subgroups of women with distinct experiences with the symptom cluster of pain, fatigue, sleep disturbance, and depressive symptoms and evaluate differences in demographic and clinical characteristics, differences in psychological symptoms, and differences in pain characteristics among these subgroups.


Patients completed symptom questionnaires in the week following CTX administration. Latent class profile analysis (LCPA) was used to determine the patient subgroups.


Three subgroups were identified: 140 patients (35.8 %) in the “low,” 189 patients (48.3 %) in the “moderate,” and 62 patients (15.9 %) in the “all high” latent class. Patients in the all high class had a lower functional status, a higher comorbidity profile, a higher symptom burden, and a poorer quality of life.


Study findings provide evidence of the utility of LCPA to explain inter-individual variability in the symptom experience of patients undergoing CTX. The ability to characterize subgroups of patients with distinct symptom experiences allows for the identification of high-risk patients and may guide the design of targeted interventions that are tailored to an individual’s symptom profile.


Pain Fatigue Sleep disturbance Depression Breast cancer Latent class profile analysis Quality of life 



This study was funded by the National Cancer Institute (CA134900). Dr. Miaskowski is an American Cancer Society (ACS) Clinical Research Professor and has a K05 award from the National Cancer Institute (CA168960). Dr. Langford was supported by a Department of Defense Breast Cancer Research Program Postdoctoral Fellowship.

Conflict of interest

The authors have no conflicts of interest to declare. The authors had primary control over all of the data and agree to allow the journal to review the date if requested.


  1. 1.
    van den Beuken-van Everdingen MHJ, de Rijke JM, Kessels AG et al (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18:1437–1449CrossRefGoogle Scholar
  2. 2.
    Miaskowski C, Dibble SL (1995) The problem of pain in outpatients with breast cancer. Oncol Nurs Forum 22:791–797PubMedGoogle Scholar
  3. 3.
    Portenoy RK (1989) Cancer pain. Epidemiology and syndromes. Cancer 63:2298–2307PubMedCrossRefGoogle Scholar
  4. 4.
    Miaskowski C, Cooper BA, Paul SM et al (2006) Subgroups of patients with cancer with different symptom experiences and quality-of-life outcomes: a cluster analysis. Oncol Nurs Forum 33(5):E79–E89PubMedCrossRefGoogle Scholar
  5. 5.
    Miaskowski C, Lee KA (1999) Pain, fatigue, and sleep disturbances in oncology outpatients receiving radiation therapy for bone metastasis: a pilot study. J Pain Symptom Manage 17:320–332PubMedCrossRefGoogle Scholar
  6. 6.
    Pud D, Ami SB, Cooper BA et al (2008) The symptom experience of oncology outpatients has a different impact on quality of life outcomes. J Pain Symptom Manage 35:162–170PubMedCrossRefGoogle Scholar
  7. 7.
    Illi J, Miaskowski C, Cooper B et al (2012) Association between pro- and anti-inflammatory cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression. Cytokine 58:437–447. doi: 10.1016/j.cyto.2012.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dodd MJ, Cho MH, Cooper BA, Miaskowski C (2010) The effect of symptom clusters on functional status and quality of life in women with breast cancer. Eur J Oncol Nurs 14:101–110PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dodd MJ, Cho MH, Cooper BA et al (2011) Identification of latent classes in patients who are receiving biotherapy based on symptom experience and its effect on functional status and quality of life. Oncol Nurs Forum 38:33–42PubMedCrossRefGoogle Scholar
  10. 10.
    Karnofsky D, Abelmann WH, Craver LV, Burchenal JH (1948) The use of nitrogen mustard in the palliative treatment of cancer. Cancer 1:634–656CrossRefGoogle Scholar
  11. 11.
    Sangha O, Stucki G, Liang MH, Fossel AH, Katz JN (2003) The Self-Administered Comorbidity Questionnaire: a new method to assess comorbidity for clinical and health services research. Arthritis Rheum 49:156–163PubMedCrossRefGoogle Scholar
  12. 12.
    Cleeland CS, Ryan KM (1994) Pain assessment: global use of the Brief Pain Inventory. Ann Acad Med Singap 23:129–138PubMedGoogle Scholar
  13. 13.
    Carpenter JS, Andrykowski MA (1998) Psychometric evaluation of the Pittsburgh sleep quality index. J Psychosom Res 45:5–13PubMedCrossRefGoogle Scholar
  14. 14.
    Sheehan TJ, Fifield J, Reisine S, Tennen H (1995) The measurement structure of the Center for Epidemiologic Studies Depression Scale. J Pers Assess 64:507–521PubMedCrossRefGoogle Scholar
  15. 15.
    Lee KA (1992) Self-reported sleep disturbances in employed women. Sleep 15:493–498PubMedGoogle Scholar
  16. 16.
    Lee KA, Hicks G, Nino-Murcia G (1991) Validity and reliability of a scale to assess fatigue. Psychiatry Res 36:291–298PubMedCrossRefGoogle Scholar
  17. 17.
    Fletcher BS, Paul SM, Dodd MJ et al (2008) Prevalence, severity, and impact of symptoms on female family caregivers of patients at the initiation of radiation therapy for prostate cancer. J Clin Oncol 26:599–605. doi: 10.1200/JCO.2007.12.2838 PubMedCrossRefGoogle Scholar
  18. 18.
    Spielberger CG, Gorsuch RL, Suchene R, Vagg PR, Jacobs GA (1983) Manual for the State-Anxiety (Form Y): self evaluation questionnaire. Consulting Psychologists Press, Palo AltoGoogle Scholar
  19. 19.
    Bieling PJ, Antony MM, Swinson RP (1998) The State-Trait Anxiety Inventory, trait version: structure and content re-examined. Behav Res Ther 36:777–788PubMedCrossRefGoogle Scholar
  20. 20.
    Cimprich B (1992) Attentional fatigue following breast cancer surgery. Res Nurs Health 15:199–207PubMedCrossRefGoogle Scholar
  21. 21.
    Jansen CE, Dodd MJ, Miaskowski CA, Dowling GA, Kramer J (2008) Preliminary results of a longitudinal study of changes in cognitive function in breast cancer patients undergoing chemotherapy with doxorubicin and cyclophosphamide. Psychooncology 17:1189–1195. doi: 10.1002/pon.1342 PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrell BR, Wisdom C, Wenzl C (1989) Quality of life as an outcome variable in the management of cancer pain. Cancer 63:2321–2327PubMedCrossRefGoogle Scholar
  23. 23.
    Padilla GV, Presant C, Grant MM, Metter G, Lipsett J, Heide F (1983) Quality of life index for patients with cancer. Res Nurs Health 6:117–126PubMedCrossRefGoogle Scholar
  24. 24.
    Nylund KL, Asparouhov T, Muthen BO (2007) Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Struct Equ Model 14:535–569CrossRefGoogle Scholar
  25. 25.
    Celeux G, Soromenho G (1996) An entropy criterion for assessing the number of clusters in a mixture model. J Classif 13:195–212CrossRefGoogle Scholar
  26. 26.
    Collins LM, Wugalter SE (1992) Latent class models for stage-sequential dynamic latent variables. Multivar Behav Res 27:131–157CrossRefGoogle Scholar
  27. 27.
    Lanza ST, Flaherty BP, Collins LM (2003) Latent class and latent transition analysis. In: Schinka JA, Velicer WF (eds) Handbook of psychology: research methods in psychology. John Wiley & Sons, Inc, Hoboken, pp 663–685Google Scholar
  28. 28.
    Muthen LK, Muthen BO (1998-2012) Mplus user’s guide (7th ed.). Muthen & Muthen, Los Angeles, CAGoogle Scholar
  29. 29.
    Muthen B, Shedden K (1999) Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics 55:463–469PubMedCrossRefGoogle Scholar
  30. 30.
    Paul SM, Zelman DC, Smith M, Miaskowski C (2005) Categorizing the severity of cancer pain: further exploration of the establishment of cutpoints. Pain 113:37–44PubMedCrossRefGoogle Scholar
  31. 31.
    Lewinsohn PM, Seeley JR, Roberts RE, Allen NB (1997) Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol Aging 12:277–287PubMedCrossRefGoogle Scholar
  32. 32.
    Kroenke CH, Kwan ML, Neuget AI, Ergas IJ, Wright JD, Caan BJ, Hershman D, Kushi LH (2013) Social networks, social support mechanisms, and quality of life after breast cancer diagnosis. Breast Cancer Res Treat 139:515–527PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Dodd MJ, Miaskowski C, Paul SM (2001) Symptom clusters and their effect on the functional status of patients with cancer. Oncol Nurs Forum 28:465–470PubMedGoogle Scholar
  34. 34.
    Kim HJ, Barsevick AM, Beck SL, Dudley W (2012) Clinical subgroups of a psychoneurologic symptom cluster in women receiving treatment for breast cancer: a secondary analysis. Oncol Nurs Forum 39:E20–E30PubMedCrossRefGoogle Scholar
  35. 35.
    So WK, Marsh G, Ling WM et al (2009) The symptom cluster of fatigue, pain, anxiety and depression and the effect on the quality of life of women receiving treatment for breast cancer: a multicenter study. Oncol Nurs Forum 36:E205–E214PubMedCrossRefGoogle Scholar
  36. 36.
    Gonzalez P, Castaneda SF, Dale J et al (2014) Spiritual well-being and depressive symptoms among cancer survivors. Support Care Cancer 22:2393–2400PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Myers S (2008) Proinflammatory cytokines and sickness behavior: implications for depression and cancer-related symptoms. Oncol Nurs Forum 35:802–807PubMedCrossRefGoogle Scholar
  38. 38.
    Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234PubMedCrossRefGoogle Scholar
  39. 39.
    Doong SH, Dhruva A, Dunn LB et al (2015) Associations between cytokine genes and a symptom cluster of pain, fatigue, sleep disturbance, and depression in patients prior to breast cancer surgery. Biol Res Nurs 17:237–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dale J. Langford
    • 1
  • Steven M. Paul
    • 1
  • Bruce Cooper
    • 1
  • Kord M. Kober
    • 1
  • Judy Mastick
    • 1
  • Michelle Melisko
    • 2
  • Jon D. Levine
    • 2
  • Fay Wright
    • 3
  • Marilyn J. Hammer
    • 3
  • Frances Cartwright
    • 3
  • Kathryn A. Lee
    • 1
  • Bradley E. Aouizerat
    • 1
    • 4
  • Christine Miaskowski
    • 1
  1. 1.Department of Physiological Nursing, School of NursingUniversity of CaliforniaSan FranciscoUSA
  2. 2.School of MedicineUniversity of CaliforniaSan FranciscoUSA
  3. 3.College of NursingNew York UniversityNew YorkUSA
  4. 4.Institute for Human GeneticsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations