Supportive Care in Cancer

, Volume 23, Issue 11, pp 3165–3172 | Cite as

Pre-therapy mRNA expression of TNF is associated with regimen-related gastrointestinal toxicity in patients with esophageal cancer: a pilot study

  • J. M. Bowen
  • I. White
  • L. Smith
  • A. Tsykin
  • K. Kristaly
  • S. K. Thompson
  • C. S. Karapetis
  • H. Tan
  • P. A. Game
  • T. Irvine
  • D. J. Hussey
  • D. I. Watson
  • D. M. K. Keefe
Original Article

Abstract

Purpose

Esophageal cancer has a high mortality rate, and its multimodality treatment is often associated with significant rates of severe toxicity. Effort is needed to uncover ways to maximize effectiveness of therapy through identification of predictive markers of response and toxicity. As such, the aim of this study was to identify genes predictive of chemoradiotherapy-induced gastrointestinal toxicity using an immune pathway-targeted approach.

Methods

Adults with esophageal cancer treated with chemotherapy consisting of 5-fluorouracil and cisplatin and 45–50 Gy radiation were recruited to the study. Pre-therapy-collected whole blood was analyzed for relative expression of immune genes using real-time polymerase chain reaction (RT-PCR). Gene expression was compared between patients who experienced severe regimen-related gastrointestinal toxicity vs. those experiencing mild to moderate toxicity.

Results

Blood from 31 patients were analyzed by RT-PCR. Out of 84 immune genes investigated, TNF was significantly elevated (2.05-fold, p = 0.025) in the toxic group (n = 12) compared to the non-toxic group (n = 19). Nausea and vomiting was the most commonly documented severe toxicity. No associations between toxicity and response, age, sex, histology, or treatment were evident.

Conclusions

This study supports evidence of TNF as a predictive biomarker in regimen-related gastrointestinal toxicity. Confirming these findings in a larger cohort is warranted.

Keywords

Toxicity Chemoradiation Esophageal cancer Mucositis RT-PCR 

Notes

Acknowledgments

We acknowledge the assistance provided by Bronwen Jones and Jeff Bull in patient identification, Associate Professor Peter Devitt and DrNimitSinghal for patient recruitment, Mr Tim Bright for tumor response classification, and Mark Van der Hoek for RNA bioanalysis.

Conflict of interest

The authors have no conflict of interest associated with publication of this manuscript.

Supplementary material

520_2015_2696_MOESM1_ESM.docx (22 kb)
Supplementary Table 1(DOCX 22 kb)
520_2015_2696_MOESM2_ESM.docx (19 kb)
Supplementary Table 2(DOCX 19 kb)

References

  1. 1.
    El-Serag HB (2007) Time trends of gastroesophageal reflux disease: a systematic review. Clin Gastroenterol Hepatol 5:17–26CrossRefPubMedGoogle Scholar
  2. 2.
    Monjazeb AM, Blackstock AW (2013) The impact of multimodality therapy of distal esophageal and gastroesophageal junction adenocarcinomas on treatment-related toxicity and complications. Semin Radiat Oncol 23:60–73CrossRefPubMedGoogle Scholar
  3. 3.
    Courrech Staal EF, Aleman BM, Boot H, van Velthuysen ML, van Tinteren H, van Sandick JW (2010) Systematic review of the benefits and risks of neoadjuvant chemoradiation for oesophageal cancer. Br J Surg 97:1482–1496CrossRefPubMedGoogle Scholar
  4. 4.
    Fiorica F, Di Bona D, Schepis F, Licata A, Shahied L, Venturi A, Falchi AM, Craxi A, Camma C (2004) Preoperative chemoradiotherapy for oesophageal cancer: a systematic review and meta-analysis. Gut 53:925–930PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    van Soest EM, Dieleman JP, Siersema PD, Sturkenboom MC, Kuipers EJ (2005) Increasing incidence of barrett's oesophagus in the general population. Gut 54:1062–1066PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Morgan MA, Lewis WG, Casbard A, Roberts SA, Adams R, Clark GW, Havard TJ, Crosby TD (2009) Stage-for-stage comparison of definitive chemoradiotherapy, surgery alone and neoadjuvant chemotherapy for oesophageal carcinoma. Br J Surg 96:1300–1307CrossRefPubMedGoogle Scholar
  7. 7.
    Hiura Y, Takiguchi S, Yamamoto K, Kurokawa Y, Yamasaki M, Nakajima K, Miyata H, Fujiwara Y, Mori M, Doki Y (2012) Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int J Clin Oncol 17:316–323CrossRefPubMedGoogle Scholar
  8. 8.
    Thompson SK, Ruszkiewicz AR, Jamieson GG, Esterman A, Watson DI, Wijnhoven BP, Lamb PJ, Devitt PG (2008) Improving the accuracy of tnm staging in esophageal cancer: a pathological review of resected specimens. Ann Surg Oncol 15:3447–3458CrossRefPubMedGoogle Scholar
  9. 9.
    Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J (2007) Australasian Gastro-Intestinal Trials G: Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 8:226–234CrossRefPubMedGoogle Scholar
  10. 10.
    Cortez MA, Scrideli CA, Yunes JA, Valera ET, Toledo SR, Pavoni-Ferreira PC, Lee ML, Petrilli AS, Brandalise SR, Tone LG (2009) Mrna expression profile of multidrug resistance genes in childhood acute lymphoblastic leukemia. Low expression levels associated with a higher risk of toxic death. Pediatr Blood Cancer 53:996–1004CrossRefPubMedGoogle Scholar
  11. 11.
    Hummerich J, Werle-Schneider G, Popanda O, Celebi O, Chang-Claude J, Kropp S, Mayer C, Debus J, Bartsch H, Schmezer P (2006) Constitutive mrna expression of DNA repair-related genes as a biomarker for clinical radio-resistance: a pilot study in prostate cancer patients receiving radiotherapy. Int J Radiat Biol 82:593–604CrossRefPubMedGoogle Scholar
  12. 12.
    Rieger KE, Hong WJ, Tusher VG, Tang J, Tibshirani R, Chu G (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci U S A 101:6635–6640PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Sakamoto K, Oka M, Yoshino S, Hazama S, Abe T, Okayama N, Hinoda Y (2006) Relation between cytokine promoter gene polymorphism and toxicity of 5-fluorouracil plus cisplatin chemotherapy. Oncol Rep 16:381–387PubMedGoogle Scholar
  14. 14.
    Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C, Eichelbaum M (2008) German FUTSG: Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the german 5-fu toxicity study group. J Clin Oncol 26:2131–2138CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang L, Yang M, Bi N, Ji W, Wu C, Tan W, Zhao L, Yu D, Lin D, Wang L (2010) Association of tgf-beta1 and xpd polymorphisms with severe acute radiation-induced esophageal toxicity in locally advanced lung cancer patients treated with radiotherapy. Radiother Oncol 97:19–25CrossRefPubMedGoogle Scholar
  16. 16.
    Ezzeldin HH, Diasio RB (2008) Predicting fluorouracil toxicity: can we finally do it? J Clin Oncol 26:2080–2082CrossRefPubMedGoogle Scholar
  17. 17.
    Sonis ST (2007) Pathobiology of oral mucositis: novel insights and opportunities. J Support Oncol 5:3–11PubMedGoogle Scholar
  18. 18.
    Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keefe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33:448–460CrossRefPubMedGoogle Scholar
  19. 19.
    Sonis ST (2002) The biologic role for nuclear factor-kappab in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Crit Rev Oral Biol Med 13:380–389CrossRefPubMedGoogle Scholar
  20. 20.
    Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4:277–284CrossRefPubMedGoogle Scholar
  21. 21.
    Meirovitz A, Kuten M, Billan S, Abdah-Bortnyak R, Sharon A, Peretz T, Sela M, Schaffer M, Barak V (2010) Cytokines levels, severity of acute mucositis and the need of peg tube installation during chemo-radiation for head and neck cancer—a prospective pilot study. Radiat Oncol 5:16PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Morales-Rojas T, Viera N, Moron-Medina A, Alvarez CJ, Alvarez A (2012) Proinflammatory cytokines during the initial phase of oral mucositis in patients with acute lymphoblastic leukaemia. Int J Paediatr Dent Br Paedodontic Soc Int Assoc Dent Child 22:191–196Google Scholar
  23. 23.
    Bogunia-Kubik K, Polak M, Lange A (2003) Tnf polymorphisms are associated with toxic but not with agvhd complications in the recipients of allogeneic sibling haematopoietic stem cell transplantation. Bone Marrow Transplant 32:617–622CrossRefPubMedGoogle Scholar
  24. 24.
    Hildebrandt MA, Komaki R, Liao Z, Gu J, Chang JY, Ye Y, Lu C, Stewart DJ, Minna JD, Roth JA, Lippman SM, Cox JD, Hong WK, Spitz MR, Wu X (2010) Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer. PLoS One 5:e12402PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Al-Dasooqi N, Bowen JM, Gibson RJ, Logan RM, Stringer AM, Keefe DM (2011) Selection of housekeeping genes for gene expression studies in a rat model of irinotecan-induced mucositis. Chemotherapy 57:43–53CrossRefPubMedGoogle Scholar
  26. 26.
    Aprile G, Ramoni M, Keefe D, Sonis S (2008) Application of distance matrices to define associations between acute toxicities in colorectal cancer patients receiving chemotherapy. Cancer 112:284–292CrossRefPubMedGoogle Scholar
  27. 27.
    Aprile G, Ramoni M, Keefe D, Sonis S (2009) Links between regimen-related toxicities in patients being treated for colorectal cancer. Curr Opin Support Palliat Care 3:50–54CrossRefPubMedGoogle Scholar
  28. 28.
    Keefe DM, Elting LS, Nguyen HT, Grunberg SM, Aprile G, Bonaventura A, Selva-Nayagam S, Barsevick A, Koczwara B, Sonis ST (2014) Risk and outcomes of chemotherapy-induced diarrhea (CID) among patients with colorectal cancer receiving multi-cycle chemotherapy. Cancer Chemother Pharmacol 74:675–680CrossRefPubMedGoogle Scholar
  29. 29.
    Bradley J, Movsas B (2004) Radiation esophagitis: predictive factors and preventive strategies. Semin Radiat Oncol 14:280–286CrossRefPubMedGoogle Scholar
  30. 30.
    Meluch AA, Greco FA, Gray JR, Thomas M, Sutton VM, Davis JL, Kalman LA, Shaffer DW, Yost K, Rinaldi DA, Hainsworth JD (2003) Preoperative therapy with concurrent paclitaxel/carboplatin/infusional 5-fu and radiation therapy in locoregional esophageal cancer: final results of a minnie pearl cancer research network phase ii trial. Cancer J 9:251–260CrossRefPubMedGoogle Scholar
  31. 31.
    Brucher BL, Stein HJ, Zimmermann F, Werner M, Sarbia M, Busch R, Dittler HJ, Molls M, Fink U, Siewert JR (2004) Responders benefit from neoadjuvant radiochemotherapy in esophageal squamous cell carcinoma: results of a prospective phase-ii trial. Eur J Surg Oncol 30:963–971CrossRefPubMedGoogle Scholar
  32. 32.
    Schauer MC, Holzmann B, Peiper M, Friess H, Knoefel WT, Theisen J (2010) Interleukin-10 and -12 predict chemotherapy-associated toxicity in esophageal adenocarcinoma. J Thorac Oncol 5:1849–1854CrossRefPubMedGoogle Scholar
  33. 33.
    Adelstein DJ, Rice TW, Rybicki LA, Saxton JP, Videtic GM, Murthy SC, Mason DP, Rodriguez CP, Ives DI (2009) Mature results from a phase ii trial of postoperative concurrent chemoradiotherapy for poor prognosis cancer of the esophagus and gastroesophageal junction. J Thorac Oncol 4:1264–1269CrossRefPubMedGoogle Scholar
  34. 34.
    Crosby TD, Brewster AE, Borley A, Perschky L, Kehagioglou P, Court J, Maughan TS (2004) Definitive chemoradiation in patients with inoperable oesophageal carcinoma. Br J Cancer 90:70–75PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Hurmuzlu M, Monge OR, Smaaland R, Viste A (2010) High-dose definitive concomitant chemoradiotherapy in non-metastatic locally advanced esophageal cancer: toxicity and outcome. Dis Esophagus 23:244–252CrossRefPubMedGoogle Scholar
  36. 36.
    Ishida K, Ando N, Yamamoto S, Ide H, Shinoda M (2004) Phase ii study of cisplatin and 5-fluorouracil with concurrent radiotherapy in advanced squamous cell carcinoma of the esophagus: a japan esophageal oncology group (jeog)/japan clinical oncology group trial (jcog9516). Jpn J Clin Oncol 34:615–619CrossRefPubMedGoogle Scholar
  37. 37.
    Kato H, Sato A, Fukuda H, Kagami Y, Udagawa H, Togo A, Ando N, Tanaka O, Shinoda M, Yamana H, Ishikura S (2009) A phase ii trial of chemoradiotherapy for stage i esophageal squamous cell carcinoma: Japan clinical oncology group study (jcog9708). Jpn J Clin Oncol 39:638–643CrossRefPubMedGoogle Scholar
  38. 38.
    Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100:1995–2025CrossRefPubMedGoogle Scholar
  39. 39.
    Doyen J, Benezery K, Follana P, Ortholan C, Gerard JP, Hannoun-Levi JM, Gal J, Francois E (2013) Predictive factors for early and late local toxicities in anal cancer treated by radiotherapy in combination with or without chemotherapy. Dis Colon Rectum 56:1125–1133CrossRefPubMedGoogle Scholar
  40. 40.
    Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C, Eichelbaum M (2008) Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the german 5-fu toxicity study group. J Clin Oncol 26:2131–2138CrossRefPubMedGoogle Scholar
  41. 41.
    Hennies S, Hermann RM, Gaedcke J, Grade M, Hess CF, Christiansen H, Wolff HA (2014) Increasing toxicity during neoadjuvant radiochemotherapy as positive prognostic factor for patients with esophageal carcinoma. Dis Esophagus 27:146–151CrossRefPubMedGoogle Scholar
  42. 42.
    Duong C, Greenawalt DM, Kowalczyk A, Ciavarella ML, Raskutti G, Murray WK, Phillips WA, Thomas RJ (2007) Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer. Ann Surg Oncol 14:3602–3609CrossRefPubMedGoogle Scholar
  43. 43.
    Maher SG, Gillham CM, Duggan SP, Smyth PC, Miller N, Muldoon C, O'Byrne KJ, Sheils OM, Hollywood D, Reynolds JV (2009) Gene expression analysis of diagnostic biopsies predicts pathological response to neoadjuvant chemoradiotherapy of esophageal cancer. Ann Surg 250:729–737CrossRefPubMedGoogle Scholar
  44. 44.
    Motoori M, Takemasa I, Yamasaki M, Komori T, Takeno A, Miyata H, Takiguchi S, Fujiwara Y, Yasuda T, Yano M, Matsuura N, Matsubara K, Monden M, Mori M, Doki Y (2010) Prediction of the response to chemotherapy in advanced esophageal cancer by gene expression profiling of biopsy samples. Int J Oncol 37:1113–1120PubMedGoogle Scholar
  45. 45.
    van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, Richel DJ, Nieuwenhuijzen GA, Hosper GA, Bonenkamp JJ, Cuesta MA, Blaisse RJ et al (2012) Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med 366:2074–2084CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • J. M. Bowen
    • 1
  • I. White
    • 2
  • L. Smith
    • 3
  • A. Tsykin
    • 4
  • K. Kristaly
    • 2
  • S. K. Thompson
    • 3
  • C. S. Karapetis
    • 5
  • H. Tan
    • 6
  • P. A. Game
    • 3
  • T. Irvine
    • 7
  • D. J. Hussey
    • 7
  • D. I. Watson
    • 7
  • D. M. K. Keefe
    • 2
  1. 1.School of Medical SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.School of MedicineUniversity of AdelaideAdelaideAustralia
  3. 3.Discipline of SurgeryUniversity of AdelaideAdelaideAustralia
  4. 4.Centre for Cancer BiologySA PathologyAdelaideAustralia
  5. 5.School of MedicineFlinders UniversityBedford ParkAustralia
  6. 6.RAH Cancer CentreRoyal Adelaide HospitalAdelaideAustralia
  7. 7.Department of SurgeryFlinders UniversityAdelaideAustralia

Personalised recommendations