Supportive Care in Cancer

, 18:159 | Cite as

Marine phospholipids—a promising new dietary approach to tumor-associated weight loss

  • Lenka A. Taylor
  • Lars Pletschen
  • Jann Arends
  • Clemens Unger
  • Ulrich Massing
Original Article


Goals of work

Advanced tumor disease very often evokes excessive loss of body weight. Among others, fish oil or marine fatty acid ethyl esters were investigated for treatment of cancer cachexia with controversial results. In this study, a new formulation of marine fatty acids was investigated, the marine phospholipids, with more than 50% of phospholipid-bound fatty acids being eicosapentaenoic and docosahexaenoic acid.

Materials and methods

Thirty-one tumor patients with various tumor entities suffering from weight loss were asked to take marine phospholipids (1.5 g/day) as softgel capsules for a period of 6 weeks. Compliance, body weight, appetite, and quality of life as well as the fatty acid profile in plasma and blood cells were monitored; 17 patients could be analyzed.

Main results

Marine phospholipids were very well accepted; low-dose supplementation resulted in a significant increase of eicosapentaenoic and docosahexaenoic acid in plasma phospholipids; therefore, significantly reducing the n − 6 to n − 3 fatty acid ratio. A stabilization of body weight was achieved (median weight change of +0.6% after 6 weeks), while appetite and quality of life improved.


These promising first results encourage further investigation of marine phospholipids in cancer care.


Marine phospholipids Cancer Weight loss Marine fatty acids Lyso-phosphatidylcholine 



We thank the Dietmar Hopp Stiftungs GmbH and Kirstins Weg e.V. for financial support. Thanks to all of our colleagues who supported the performance of this investigation.

Conflict of interest

The Tumor Biology Center Freiburg has applied for a patent pertaining to the use of marine phospholipids for palliative cancer treatment. The patent is intended to be commercialized. The presented investigation of marine phospholipids was funded in its entirety, including the purchase of the marine phospholipid formulation, by research sponsorship as stated in the acknowledgements section.


  1. 1.
    Sarhill N, Mahmoud F, Walsh D et al (2003) Evaluation of nutritional status in advanced metastatic cancer. Support Care Cancer 11:652–659. doi: 10.1007/s00520-003-0486-0 CrossRefPubMedGoogle Scholar
  2. 2.
    Tranmer JE, Heyland D, Dudgeon D, Groll D, Squires-Graham M, Coulson K (2003) Measuring the symptom experience of seriously ill cancer and noncancer hospitalized patients near the end of life with the memorial symptom assessment scale. J Pain Symptom Manage 25:420–429. doi: 10.1016/S0885-3924(03)00074-5 CrossRefPubMedGoogle Scholar
  3. 3.
    Gagnon B, Bruera E (1998) A review of the drug treatment of cachexia associated with cancer. Drugs 55:675–688. doi: 10.2165/00003495-199855050-00005 CrossRefPubMedGoogle Scholar
  4. 4.
    Dewys WD, Begg C, Lavin PT et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern cooperative oncology group. Am J Med 69:491–497. doi: 10.1016/S0149-2918(05)80001-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Jatoi A (2006) Pharmacologic therapy for the cancer anorexia/weight loss syndrome: a data-driven, practical approach. J Support Oncol 4:499–502PubMedGoogle Scholar
  6. 6.
    Deans C, Wigmore SJ (2005) Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care 8:265–269. doi: 10.1097/01.mco.0000165004.93707.88 CrossRefPubMedGoogle Scholar
  7. 7.
    Esper DH, Harb WA (2005) The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract 20:369–376. doi: 10.1177/0115426505020004369 CrossRefPubMedGoogle Scholar
  8. 8.
    Falconer JS, Fearon KC, Plester CE, Ross JA, Carter DC (1994) Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann Surg 219:325–331. doi: 10.1097/00000658-199404000-00001 CrossRefPubMedGoogle Scholar
  9. 9.
    Grimble RF (2003) Nutritional therapy for cancer cachexia. Gut 52:1391–1392. doi: 10.1136/gut.52.10.1391 CrossRefPubMedGoogle Scholar
  10. 10.
    Morley JE, Thomas DR, Wilson MM (2006) Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr 83:735–743PubMedGoogle Scholar
  11. 11.
    Tisdale MJ (2004) Tumor–host interactions. J Cell Biochem 93:871–877. doi: 10.1002/jcb.20246 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55:115–122. doi: 10.1136/gut.2004.047100 CrossRefPubMedGoogle Scholar
  13. 13.
    Baburina I, Jackowski S (1999) Cellular responses to excess phospholipid. J Biol Chem 274:9400–9408. doi: 10.1074/jbc.274.14.9400 CrossRefPubMedGoogle Scholar
  14. 14.
    Das UN, Ramos EJ, Meguid MM (2003) Metabolic alterations during inflammation and its modulation by central actions of omega-3 fatty acids. Curr Opin Clin Nutr Metab Care 6:413–419. doi: 10.1097/00075197-200307000-00010 CrossRefPubMedGoogle Scholar
  15. 15.
    Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n−3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271PubMedGoogle Scholar
  16. 16.
    Wigmore SJ, Fearon KC, Maingay JP, Ross JA (1997) Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clin Sci (Lond) 92:215–221Google Scholar
  17. 17.
    Ramos EJ, Middleton FA, Laviano A et al (2004) Effects of omega-3 fatty acid supplementation on tumor-bearing rats. J Am Coll Surg 199:716–723. doi: 10.1016/j.jamcollsurg.2004.07.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KC (1999) The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 81:80–86. doi: 10.1038/sj.bjc.6690654 CrossRefPubMedGoogle Scholar
  19. 19.
    Gogos CA, Ginopoulos P, Salsa B, Apostolidou E, Zoumbos NC, Kalfarentzos F (1998) Dietary omega-3 polyunsaturated fatty acids plus vitamin E restore immunodeficiency and prolong survival for severely ill patients with generalized malignancy: a randomized control trial. Cancer 82:395–402. doi: 10.1002/(SICI)1097-0142(19980115)82:2<403::AID-CNCR21>3.0.CO;2-1 CrossRefPubMedGoogle Scholar
  20. 20.
    Bruera E, Strasser F, Palmer JL et al (2003) Effect of fish oil on appetite and other symptoms in patients with advanced cancer and anorexia/cachexia: a double-blind, placebo-controlled study. J Clin Oncol 21:129–134. doi: 10.1200/JCO.2003.01.101 CrossRefPubMedGoogle Scholar
  21. 21.
    Fearon KC, Von Meyenfeldt MF, Moses AG et al (2003) Effect of a protein and energy dense n−3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486. doi: 10.1136/gut.52.10.1479 CrossRefPubMedGoogle Scholar
  22. 22.
    Fearon KC, Barber MD, Moses AG et al (2006) Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol 24:3401–3407. doi: 10.1200/JCO.2005.04.5724 CrossRefPubMedGoogle Scholar
  23. 23.
    Burns CP, Halabi S, Clamon GH et al (1999) Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer and leukemia group B study 9473. Clin Cancer Res 5:3942–3947PubMedGoogle Scholar
  24. 24.
    Burns CP, Halabi S, Clamon G et al (2004) Phase II study of high-dose fish oil capsules for patients with cancer-related cachexia. Cancer 101:370–378. doi: 10.1002/cncr.20362 CrossRefPubMedGoogle Scholar
  25. 25.
    Jatoi A (2005) Fish oil, lean tissue, and cancer: is there a role for eicosapentaenoic acid in treating the cancer anorexia/weight loss syndrome? Crit Rev Oncol Hematol 55:37–43. doi: 10.1016/j.critrevonc.2005.01.004 CrossRefPubMedGoogle Scholar
  26. 26.
    Persson EM, Nilsson RG, Hansson GI et al (2006) A clinical single-pass perfusion investigation of the dynamic in vivo secretory response to a dietary meal in human proximal small intestine. Pharm Res 23:742–751. doi: 10.1007/s11095-006-9607-z CrossRefPubMedGoogle Scholar
  27. 27.
    Amate L, Gil A, Ramirez M (2001) Feeding infant piglets formula with long-chain polyunsaturated fatty acids as triacylglycerols or phospholipids influences the distribution of these fatty acids in plasma lipoprotein fractions. J Nutr 131:1250–1255PubMedGoogle Scholar
  28. 28.
    Zierenberg O, Grundy SM (1982) Intestinal absorption of polyenephosphatidylcholine in man. J Lipid Res 23:1136–1142PubMedGoogle Scholar
  29. 29.
    Gauster M, Rechberger G, Sovic A et al (2005) Endothelial lipase releases saturated and unsaturated fatty acids of high density lipoprotein phosphatidylcholine. J Lipid Res 46:1517–1525. doi: 10.1194/jlr.M500054-JLR200 CrossRefPubMedGoogle Scholar
  30. 30.
    Oette K, Kuhn G, Romer A, Niemann R, Gundermann KJ, Schumacher R (1995) Arzneimittelforschung 45:875–879. Absorption of di-linoleoylphosphatidylcholine after oral administrationGoogle Scholar
  31. 31.
    Wijendran V, Huang MC, Diau GY, Boehm G, Nathanielsz PW, Brenna JT (2002) Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in baboon neonates. Pediatr Res 51:265–272. doi: 10.1203/00006450-200203000-00002 CrossRefPubMedGoogle Scholar
  32. 32.
    Goustard-Langelier B, Guesnet P, Durand G, Antoine JM, Alessandri JM (1999) n-3 and n-6 fatty acid enrichment by dietary fish oil and phospholipid sources in brain cortical areas and nonneural tissues of formula-fed piglets. Lipids 34:5–16. doi: 10.1007/s11745-999-331-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Buchholz AC, Bartok C, Schoeller DA (2004) The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract 19:433–446. doi: 10.1177/0115426504019005433 CrossRefPubMedGoogle Scholar
  34. 34.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  35. 35.
    Taylor LA, Arends J, Hodina AK, Unger C, Massing U (2007) Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis 6:17. doi: 10.1186/1476-511X-6-17 CrossRefPubMedGoogle Scholar
  36. 36.
    Taylor LA, Ziroli V, Massing U (2008) Analysis of fatty acid profile in plasma phospholipids by solid-phase extraction in combination with GC. Eur J Lipid Sci Technol (in press)CrossRefPubMedGoogle Scholar
  37. 37.
    Aaronson NK, Ahmedzai S, Bergman B et al (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85:365–376. doi: 10.1093/jnci/85.5.365 CrossRefPubMedGoogle Scholar
  38. 38.
    Osoba D, Rodrigues G, Myles J, Zee B, Pater J (1998) Interpreting the significance of changes in health-related quality-of-life scores. J Clin Oncol 16:139–144PubMedGoogle Scholar
  39. 39.
    Schwemmer M, Aho H, Michel JB (2001) Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells. Tissue Cell 33:233–240. doi: 10.1054/tice.2000.0163 CrossRefPubMedGoogle Scholar
  40. 40.
    Wu T, Ikezono T, Angus CW, Shelhamer JH (1996) Tumor necrosis factor-alpha induces the 85-kDa cytosolic phospholipase A2 gene expression in human bronchial epithelial cells. Biochim Biophys Acta 1310:175–184. doi: 10.1016/0167-4889(95)00143-3 CrossRefPubMedGoogle Scholar
  41. 41.
    Yamashita S, Ogawa M, Abe T et al (1994) Group II phospholipase A2 in invasive gastric cancer cell line is induced by interleukin 6. Biochem Biophys Res Commun 198:878–884. doi: 10.1006/bbrc.1994.1125 CrossRefPubMedGoogle Scholar
  42. 42.
    Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340. doi: 10.2174/156802607779941314 CrossRefPubMedGoogle Scholar
  43. 43.
    Pidgeon GP, Lysaght J, Krishnamoorthy S et al (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 26:503–524. doi: 10.1007/s10555-007-9098-3 CrossRefPubMedGoogle Scholar
  44. 44.
    Kriat M, Vion-Dury J, Confort-Gouny S et al (1993) Analysis of plasma lipids by NMR spectroscopy: application to modifications induced by malignant tumors. J Lipid Res 34:1009–1019PubMedGoogle Scholar
  45. 45.
    Kuliszkiewicz-Janus M, Janus W, Baczynski S (1996) Application of 31P NMR spectroscopy in clinical analysis of changes of serum phospholipids in leukemia, lymphoma and some other non-haematological cancers. Anticancer Res 16:1587–1594PubMedGoogle Scholar
  46. 46.
    Raffelt K, Moka D, Sullentrop F, Dietlein M, Hahn J, Schicha H (2000) Systemic alterations in phospholipid concentrations of blood plasma in patients with thyroid carcinoma: an in-vitro (31) P high-resolution NMR study. NMR Biomed 13:8–13. doi: 10.1002/(SICI)1099-1492(200002)13:1<8::AID-NBM602>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  47. 47.
    Sullentrop F, Moka D, Neubauer S et al (2002) 31P NMR spectroscopy of blood plasma: determination and quantification of phospholipid classes in patients with renal cell carcinoma. NMR Biomed 15:60–68. doi: 10.1002/nbm.758 CrossRefPubMedGoogle Scholar
  48. 48.
    Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 270:7757–7764. doi: 10.1074/jbc.270.13.7757 CrossRefPubMedGoogle Scholar
  49. 49.
    Faas FH, Dang AQ, White J, Schaefer R, Johnson D (2001) Increased prostatic lysophosphatidylcholine acyltransferase activity in human prostate cancer: a marker for malignancy. J Urol 165:463–468. doi: 10.1097/00005392-200102000-00026 CrossRefPubMedGoogle Scholar
  50. 50.
    Balsinde J, Bianco ID, Ackermann EJ, Conde-Frieboes K, Dennis EA (1995) Inhibition of calcium-independent phospholipase A2 prevents arachidonic acid incorporation and phospholipid remodeling in P388D1 macrophages. Proc Natl Acad Sci USA 92:8527–8531. doi: 10.1073/pnas.92.18.8527 CrossRefPubMedGoogle Scholar
  51. 51.
    Xie Y, Gibbs TC, Mukhin YV, Meier KE (2002) Role for 18:1 lysophosphatidic acid as an autocrine mediator in prostate cancer cells. J Biol Chem 277:32516–32526. doi: 10.1074/jbc.M203864200 CrossRefPubMedGoogle Scholar
  52. 52.
    Jatoi A, Egner J, Loprinzi CL et al (2004) Investigating the utility of serum cytokine measurements in a multi-institutional cancer anorexia/weight loss trial. Support Care Cancer 12:640–644. doi: 10.1007/s00520-004-0638-x CrossRefPubMedGoogle Scholar
  53. 53.
    Persson C, Glimelius B, Ronnelid J, Nygren P (2005) Impact of fish oil and melatonin on cachexia in patients with advanced gastrointestinal cancer: a randomized pilot study. Nutrition 21:170–178. doi: 10.1016/j.nut.2004.05.026 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lenka A. Taylor
    • 1
  • Lars Pletschen
    • 2
  • Jann Arends
    • 2
  • Clemens Unger
    • 2
  • Ulrich Massing
    • 1
  1. 1.Department of Clinical ResearchTumor Biology CenterFreiburgGermany
  2. 2.Department of Medical OncologyTumor Biology CenterFreiburgGermany

Personalised recommendations