Wiener klinische Wochenschrift

, Volume 128, Issue 5–6, pp 169–174 | Cite as

Serum antioxidant enzymes activities and oxidative stress levels in patients with acute ischemic stroke: influence on neurological status and outcome

  • Aysel Milanlioglu
  • Mehmet Aslan
  • Halil Ozkol
  • Vedat Çilingir
  • Mehmet Nuri Aydın
  • Sevdegül Karadas
original article

Summary

Background

Oxidative stress is well believed to play a role in the pathogenesis of acute ischemic stroke. Reports on antioxidant enzyme activities in patients with stroke are conflicting. Therefore, the aim of this study was to investigate serum antioxidant enzyme activities and oxidative stress levels in patients with acute ischemic stroke within 1st, 5th, and 21st day after stroke onset and also the relationship between these results and the clinical status of patients.

Methods

The current study comprised 45 patients with acute ischemic stroke and 30 healthy controls. Serum malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase activities were measured spectrophotometrically.

Results

Serum MDA levels were significantly higher in acute ischemic stroke patients within 24 h after stroke onset than controls (p < 0.05), whereas serum catalase activity was significantly lower (p < 0.05). There were no significant differences in GSH-Px and SOD activities.

Serum catalase and SOD activities were significantly lower in fifth day than those of controls (both, p < 0.05) but GSH-Px activity and MDA levels did not change (p > 0.05). Serum SOD activity was significantly lower in 21st day compared to SOD activity of controls (p < 0.05) but MDA levels, GSH-Px, and CAT activities did not change significantly.

Conclusions

Our study demonstrated that acute ischemic stroke patients have increased oxidative stress and decreased antioxidant enzymes activities. These findings indicated that an imbalance of oxidant and antioxidant status might play a role in the pathogenesis of acute ischemic stroke.

Keywords

Acute ischemic stroke Catalase Superoxide dismutase Oxidative stress 

References

  1. 1.
    Adams H, Bendixen B, Kappelle L, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1999;24:35–41.CrossRefGoogle Scholar
  2. 2.
    Chen YC, Wu JS, Yang ST, et al. Stroke, angiogenesis and phytochemicals. Front Biosci (Schol Ed). 2012;4:599–610.Google Scholar
  3. 3.
    Ames BN, Shigenega MT, Hagen M. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Love S. Oxidative stress in brain ischaemia. Brain Pathol. 1999;9:119–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation. J Biol Chem. 1986;261:10282–9.PubMedGoogle Scholar
  6. 6.
    Moro MA, Almedia A, Bolanos JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med. 2005;39:1291–304.CrossRefPubMedGoogle Scholar
  7. 7.
    Alexandrova ML, Bochev PG. Oxidative stress during the chronic phase of stroke. Free Radic Biol Med. 2005;39:297–316.CrossRefPubMedGoogle Scholar
  8. 8.
    Weigand M, Laipple A, Plaschke K, Eckstein HH, Martin E, Bardenheuer HJ. Concentration changes of malondialdehyde across the cerebral vascular bed and shedding of L-selection during carotid endarterectomy. Stroke. 1999;30:306–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Imre SG, Fekete I, Farkas T. Increased proportion of decosahexanoic acid and high lipid peroxidation capacity in erythrocytes of stroke patients. Stroke. 1994;25:2416–20.CrossRefPubMedGoogle Scholar
  10. 10.
    El Kossi MMH Zakhary MM. Oxidative stress in the context of acute cerebrovascular stroke. Stroke. 2000;31:1889–992.CrossRefPubMedGoogle Scholar
  11. 11.
    Skochii PH, Korol HM, Tymochko MF. The characteristics of lipid peroxidation in patients with an acute disorder of the cerebral circulation. Lik Sprava. 1992;6:94–6.PubMedGoogle Scholar
  12. 12.
    Aygul R, Kotan D, Demirbas F, Ulvi H, Deniz O. Plasma oxidants and antioxidants in acute ischaemic stroke. J Int Med Res. 2006;34:413–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Zimmermann C, Winnefeld K, Streck S, Roskos M, Haberl RL. Antioxidant status in acute stroke patients and patients at stroke risk. Eur Neurol. 2004;51:157–61.CrossRefPubMedGoogle Scholar
  14. 14.
    Cojocaru IM, Cojocaru M, Sapira V, Ionescu A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom J Intern Med. 2013;51:97–106.PubMedGoogle Scholar
  15. 15.
    Ozkul A, Akyol A, Yenisey C, Arpaci E, Kiylioglu N, Tataroglu C. Oxidative stress in acute ischemic stroke. J Clin Neurosci. 2007;14:1062–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Strand T, Marklund SL. Release of superoxide dismutase into cerebrospinal fluid as a marker of brain lesion in acute cerebral infarction. Stroke. 1992;23:515–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Ishibashi N, Prokopenko O, Weisbrot-Lefkowitz M, Reuhl KR, Mirochnitchenko O. Glutathione peroxidase inhibits cell death and glial activation following experimental stroke. Brain Res Mol Brain Res. 2002;109:34–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se- glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med. 1994;17:235–48.CrossRefPubMedGoogle Scholar
  19. 19.
    Spranger M, Krempien S, Schwab S, Donnenberg S, Hacke W. Superoxide dismutase activity in serum of patients with acute cerebral ischemic injury: correlation with clinical course and infarct size. Stroke. 1997;28:2425–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Cherubini A, Polidori MC, Bregnocchi M, et al. Antioxidant profile and early outcome in stroke patients. Stroke. 2000;31:2295–300.CrossRefPubMedGoogle Scholar
  21. 21.
    Demirkaya S, Topcuoglu MA, Aydin A, Ulas UH, Isimer AI, Vural O. Malondialdehyde, glutathione peroxidase and superoxide dismutase in peripheral blood erythrocytes of patients with acute cerebral ischemia. Eur J Neurol. 2001;8:43–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M, Mirochnitchenko O. Overexpression of human glutathione peroxidase protects transgenic mice against focal cerebral ischemia/reperfusion damage. Brain Res Mol Brain Res. 1998;53:333–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Kocaturk PA, Akbostanci MC, Isikay C, et al. Antioxidant status in cerebrovascular accident. Biol Trace Elem Res. 2001;80:115–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Aebi H. Catalase. In: Bergmeyer HU, Editors. Methods of enzymatic analysis. New York: Academic Press; 1974. p. 673–7.CrossRefGoogle Scholar
  25. 25.
    Placer ZA, Cushman LL, Johnson BC. Estimation of products of lipid peroxidation (as malonyldialdhyde) in biochemical systems. Anal Biochem. 1966;16:359–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976;71:952–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Matkovics B, Szabo L, Varga IS. Determination of enzyme activities in lipid peroxidation and glutathione pathways (in Hungarian). Lab Diagn. 1988;15:248–9.Google Scholar
  28. 28.
    McCord JM, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244:6049–55.PubMedGoogle Scholar
  29. 29.
    Martin JMH, Elliot D. OPCS Survey of Disability in Great Britain Report I: the prevalence of disability among adults. London: Office of Population Cencus and Survey; 1998.Google Scholar
  30. 30.
    Corrêa Mde C, Maldonado P, da Rosa CS, et al. Oxidative stress and erythrocyte acetylcholinesterase (AChE) in hypertensive and ischemic patients of both acute and chronic stages. Biomed Pharmacother. 2008;62:317–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Alonso de Leciñana M, Egido JA, Fernández C, et al., PIVE Study Investigators of the Stroke Project of the Spanish Cerebrovascular Diseases Study Group. Risk of ischemic stroke and lifetime estrogen exposure. Neurology. 2007;68:33–8.CrossRefGoogle Scholar
  32. 32.
    Yousuf S, Atif F, Ahmad M, et al. Selenium plays a modulatory role against cerebral ischemia-induced neuronal damage in rat hippocampus. Brain Res. 2007;1147:218–25.CrossRefPubMedGoogle Scholar
  33. 33.
    Sun M, Zhao Y, Gu Y, Xu C. Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int. 2009;54:339–46.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12–25.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Leinonen JS, Ahonen JP, Lonnrot K, et al. Low plasma antioxidant activity is associated with high lesion volume and neurological impairment in stroke. Stroke. 2000;31:33–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Sharpe PC, Mulholland C, Trinick T. Ascorbate and malondialdehyde in stroke patients. Ir J Med Sci. 1994;163:488–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Imre SG, Fekete I, Farkas T. Increased proportion of docosahexanoic acid and high lipid peroxidation capacity in erythrocytes of stroke patients. Stroke. 1994;25:2416–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Ferretti G, Bacchetti T, Masciangelo S, et al. Lipid peroxidation in stroke patients. Clin Chem Lab Med. 2008;46:113–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Karahocagil MK, Aslan M, Ceylan MR, et al. Serum myeloperoxidase activity and oxidative stress in patients with acute brucellosis. Clin Biochem. 2012;45:733–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Sheikh N, Tavilani H, Rezaie A, Vaisi-raygani A, Salimi S. Relationship between estradiol and antioxidant enzymes activity of ischemic stroke. J Biomed Biotechnol. 2009;2009:1–5, 841468. doi:10.1155/2009/841468.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Catal’a A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009;157:1–11.CrossRefGoogle Scholar
  42. 42.
    Ullegaddi R, Powers HJ, Gariballa SE. Antioxidant supplementation enhances antioxidant capacity and mitigates oxidative damage following acute ischaemic stroke. Eur J Clin Nutr. 2005;59:1367–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Aysel Milanlioglu
    • 1
  • Mehmet Aslan
    • 2
  • Halil Ozkol
    • 3
  • Vedat Çilingir
    • 1
  • Mehmet Nuri Aydın
    • 1
  • Sevdegül Karadas
    • 4
  1. 1.Department of Neurology, Faculty of MedicineYüzüncü Yıl UniversityVanTurkey
  2. 2.Department of Internal Medicine, Faculty of MedicineYüzüncü Yıl UniversityVanTurkey
  3. 3.Department of Medical Biology, Faculty of MedicineYüzüncü Yıl UniversityVanTurkey
  4. 4.Department of Emergency Medicine, Faculty of MedicineYüzüncü Yıl UniversityVanTurkey

Personalised recommendations