Wiener klinische Wochenschrift

, Volume 126, Issue 19–20, pp 604–612

Risk factors for the prescription of potentially inappropriate medication (PIM) in the elderly

An analysis of sickness fund routine claims data from Germany
  • Stephanie Stock
  • Marcus Redaelli
  • Dusan Simic
  • Martin Siegel
  • Frank Henschel
original article

Summary

Elderly people are especially prone to suffer adverse drug reactions (ADR). Main reasons for the higher vulnerability of the elderly to ADR are changes in metabolism as i.e. slower renal clearance and polypharmacie which often results from multimorbidity. To prevent ADR careful prescription with special consideration of these aspects is warranted. To help physicians avoid drugs which are especially likely to cause ADR lists have been developed following the consensus method process. For Germany this list is called the PRISCUS list. It was developed based on a literature review, review of international lists such as the American Beers list, and a consensus process based on a Delphi survey. It contains 83 drugs from 18 classes which are classified as potentially inapropriate medication (PIM). It also lists alternatives for each PIM. If a drug is registered with the PRISCUS list this does not mean automatically that it is contraindicated in the elderly but that special caution should be excercised in prescribing the drug, alternatives should be considered and the patient carefully monitored.

Prescription rates for PIMs in Germany in the elderly is pretty much stable at around 23% with only a small decline in the past years. Also, more than 5% of all prescriptions in the elderly are PIM prescriptions. Physicians specially trained in geriatrics tend to prescribe less PIMs compared to other physicians.

Keywords

Beers criteria PRISCUS Potentially inappropriate medication Elderly Risk factors 

Risikofaktoren für die Verschreibung potenziell inadäquater Medikation (PIM) bei älteren Patienten in Deutschland

Eine Analyse von GKV-Routinedaten an Hand der Kriterien der PRISCUS-Liste

Zusammenfassung

Unerwünschte Arzneimittelwirkungen (UAW) sind für rund 5% aller Krankenhauseinweisungen in Deutschland verantwortlich. Insbesondere ältere Menschen sind durch Veränderungen im Metabolismus sowie durch Medikamenteninteraktionen aufgrund von Polypharmazie gefährdet. Um UAWs zu vermeiden, wurde in den USA in den 1990er Jahren im Delphi-Konsensusverfahren eine Liste mit potentiell inadäquaten Medikamenten (PIMs) für ältere Menschen entwickelt, die sog. Beers-Liste. In Deutschland existiert seit Kurzem eine an die deutsche Versorgungsrealität angepasste Liste mit potentiell inadäquaten Medikamenten für ältere Personen, die sogenannte PRISCUS Liste. Sie basiert auf einem systematischen Literaturreview, einem Review international vorhandener Listen, wie z. B. der Beers Liste und einem Delphi-Konsensusprozess. Sie enthält 83 Arzneistoffe aus 18 Arzneistoffklassen welche als potenziell inadäquat für ältere Patienten eingestuft wurden. Die in der PRISCUS Liste aufgeführten Medikamente sind bei älteren Patienten nicht automatisch kontraindiziert. Vielmehr sollte bei ihrer Verschreibung besondere Sorgfalt verwendet, Alternativen geprüft bzw. ein intensives Monitoring durchgeführt werden.

In Deutschland erhalten 23% aller älteren Menschen mindestens ein PIM, mit einem unwesentlichen Rückgang in den vergangenen Jahren. Somit sind mehr als 5% aller Verschreibungen bei älteren Menschen PIMs. Ärzte mit einer Fortbildung in Geriatrie tendieren zu einer niedrigeren Verschreibungsrate im Vergleich zu anderen Ärzten.

Schlüsselwörter

Beers-Liste PRISCUS Potentiell inadäquate Medikation Geriatrie Einflussfaktoren 

References

  1. 1.
    Statistisches Bundesamt. 2013. https://www.destatis.de/bevoelkerungspyramide/. Accessed 30 April 2014.
  2. 2.
    Barmer Gek-Arzneimittel-Report 2013: Auswertungsergebnisse der GEK-Arzneimitteldaten aus den Jahren 2011–2012. Herausgeber.: Barmer Gek, Schriftenreihe Gesundheitsanalyse Bd. 20. Siegburg: Asgard-Verlagsservice GmbH; 2013.Google Scholar
  3. 3.
    Mangoni AA, Jackson SH. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br J Clin Pharmacol. 2004;57(1):6–14. PMCID: 1884408.Google Scholar
  4. 4.
    Spinewine A, Schmader KE, Barber N, Hughes C, Lapane KL, Swine C, et al. Appropriate prescribing in elderly people: how well can it be measured and optimised? Lancet. 2007;370(9582):173–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse drug reactions: a systematic review of prospective observational studies. Ann Pharmacother. 2008;42(7):1017–25.PubMedCrossRefGoogle Scholar
  6. 6.
    Beers MH, Ouslander JG, Rollingher I, Reuben DB, Brooks J, Beck JC. Explicit criteria for determining inappropriate medication use in nursing home residents. UCLA Division of Geriatric Medicine. Arch Intern Med. 1991;151(9):1825–32.PubMedCrossRefGoogle Scholar
  7. 7.
    American Geriatrics Society 2012 Beers Criteria Update Expert Panel. American geriatrics society Updated beers criteria for potentially inappropriate medication use in older adults.  J Am Geriatr Soc. 2012;60(4):616–31.Google Scholar
  8. 8.
    Holt S, Schmiedl S, Thurmann PA. Potentially inappropriate medications in the elderly: the PRISCUS list. Dtsch Arztebl Int. 2010;107(31–32):543–51. PMCID: 2933536.Google Scholar
  9. 9.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Amann C, Hasford J, Stausberg J. Stationäre Aufnahmen wegen unerwünschter Arzneimittelereignisse (UAE): Analyse der DRG-Statistik 2006. Gesundheitswesen. 2012;74(10):639–44.PubMedGoogle Scholar
  11. 11.
    Schubert I, Küpper-Nybelen J, Ihle P, Thürmann P. Prescribing potentially inappropriate medication (PIM) in Germany’s elderly as indicated by the PRISCUS list. An analysis based on regional claims data. Pharmacoepidemiol Drug Saf. 2013;22:719–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Buck MD, Atreja A, Brunker CP, Jain A, Suh TT, Palmer RM, et al. Potentially inappropriate medication prescribing in outpatient practices: prevalence and patient characteristics based on electronic health records. Am J Geriatr Pharmacother. 2009;7(2):84–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Carey IM, De Wilde S, Harris T, Victor C, Richards N, Hilton SR, et al. What factors predict potentially inappropriate primary care prescribing in older people? Analysis of UK primary care patient record database. Drugs Aging. 2008;25(8):693–706.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang CM, Wu EC, Chang IS, Lin KM. Benzodiazepine and risk of hip fractures in older people: a nested case-control study in Taiwan. Am J Geriatr Psychiatry. 2008;16(8):686–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Tamblyn R, Abrahamowicz M, du Berger R, McLeod P, Bartlett G. A 5-year prospective assessment of the risk associated with individual benzodiazepines and doses in new elderly users. J Am Geriatr Soc. 2005;53(2):233–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Ramaswamy R, Maio V, Diamond JJ, Talati AR, Hartmann CW, Arenson C, Roehl B. Potentially inappropriate prescribing in elderly: assessing doctor knowledge, confidence and barriers. J Eval Clin Pract. 2011;17(6):1153–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Thier SL, Yu-Isenberg KS, Leas BF, Cantrell CR, DeBussey S, Goldfarb NI, Nash DB. In chronic disease, nationwide data show poor adherence by patients to medication and by physicians to guidelines. Manag Care. 2008;17(2):48–52, 55–7.PubMedGoogle Scholar
  18. 18.
    Stone MA, Charpentier G, Doggen K, Kuss O, Lindblad U, Kellner C, Nolan J, Pazderska A, Rutten G, Trento M, Khunti K, GUIDANCE Study Group. Quality of care of people with type 2 diabetes in eight European countries: findings from the Guideline Adherence to Enhance Care (GUIDANCE) study. Diabetes Care. 2013;36(9):2628–38.Google Scholar
  19. 19.
    Mattison ML, Afonso KA, Ngo LH, Mukamal KJ. Preventing potentially inappropriate medication use in hospitalized older patients with a computerized provider order entry warning system. Arch Intern Med. 2010;170(15):1331–6.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Rothberg MB, Pekow PS, Liu F, Korc-Grodzicki B, Brennan MJ, Bellantonio S, et al. Potentially inappropriate medication use in hospitalized elders. J Hosp Med. 2008;3(2):91–102.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang YJ, Liu WW, Wang JB, Guo JJ. Potentially inappropriate medication use among older adults in the USA in 2007. Age Ageing. 2011;40(3):398–401.PubMedCrossRefGoogle Scholar
  22. 22.
    Thiem U, Theile G, Junius-Walker U, Holt S, Thurmann P, Hinrichs T, et al. Prerequisites for a new health care model for elderly people with multimorbidity: the PRISCUS research consortium. Z Gerontol Geriatr. 2011;44(2):115–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Tamblyn R, Huang A, Perreault R, Jacques A, Roy D, Hanley J, et al. The medical office of the 21st century (MOXXI): effectiveness of computerized decision-making support in reducing inappropriate prescribing in primary care. CMAJ. 2003;169(6):549–56. PMCID: 191278.Google Scholar
  24. 24.
    Steinman MA, Rosenthal GE, Landefeld CS, Bertenthal D, Kaboli PJ. Agreement between drugs-to-avoid criteria and expert assessments of problematic prescribing. Arch Intern Med. 2009;169(14):1326–32. PMCID: 2758269.Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Stephanie Stock
    • 1
  • Marcus Redaelli
    • 1
  • Dusan Simic
    • 1
  • Martin Siegel
    • 2
  • Frank Henschel
    • 1
  1. 1.Institut für Gesundheitsökonomie und Klinische Epidemiologie der Universität zu KölnKölnGermany
  2. 2.Management im GesundheitswesenTechnische Universität BerlinBerlinGermany

Personalised recommendations