Advertisement

Wiener klinische Wochenschrift

, Volume 126, Issue 3–4, pp 106–112 | Cite as

Insulin resistance may contribute to vascular dysfunction in patients with chronic obstructive pulmonary disease

  • Matthias Helmut Urban
  • Leyla Ay
  • Georg-Christian Funk
  • Otto Chris Burghuber
  • Philipp Eickhoff
  • Michael Wolzt
  • Arschang Valipour
original article

Summary

Background

Patients with chronic obstructive pulmonary disease (COPD) are at an increased cardiovascular risk; however, the underlying mechanisms for this relationship are ill defined. Altered glucose metabolism may increase cardiovascular risk via impaired endothelial function.

Methods

We conducted a longitudinal pilot study to assess the interrelationship between systemic vascular function, glucose metabolism, and lung function in patients with COPD. Eighteen non-smoking patients with stable moderate-to-severe COPD [67 % male; median (first to third quartiles) Forced Expiratory Volume in 1 second (FEV1) % predicted: 38 % (28–55 %); body mass index: 26 kg/m2 (24–28 kg/m2)] free from cardiovascular risk factors were evaluated. Systemic vascular function was assessed by means of flow-mediated dilation technique of the brachial artery. Laboratory measurements included fasting blood glucose levels, circulating concentrations of insulin, C-reactive protein, and fibrinogen. Homeostatic model assessment of insulin resistance (HOMA-IR) was determined. Measurements were performed at baseline and were repeated after 12 months.

Results

Flow-mediated dilation significantly decreased from 13.5 % (11–15 %) at baseline to 9.8 % (6–12 %; p = 0.002) at the follow-up visit, whereas both fasting blood glucose concentrations and HOMA-IR increased from 94 mg/dl (86–103 mg/dl) to 102 mg/dl (94–111 mg/dl; p = 0.027) and from 1.2 (0.8–2.1) to 1.7 (1.2–3.0; p = 0.023), respectively. There was a significant relationship between changes in endothelial function and changes in fasting serum glucose (r = − 0.483, p = 0.009), HOMA-IR (r = − 0.441, p = 0.019), and FEV1 (r = 0.336, p = 0.05).

Conclusion

Altered glucose metabolism may be associated with progression of endothelial dysfunction in patients with COPD.

Keywords

Cardiovascular diseases Chronic obstructive pulmonary disease Insulin resistance Lung function Vasodilation 

Insulinresistenz bei Patienten mit COPD möglicherweise an vaskulärer Dysfunktion beteiligt

Zusammenfassung

Grundlagen

Patienten mit Chronisch Obstruktiver Lungenerkrankung (COPD) sind einem erhöhten kardiovaskulären Risiko ausgesetzt; die zugrundeliegenden Mechanismen für diesen Zusammenhang sind jedoch nicht gänzlich bekannt. Ein gestörter Glukosemetabolismus könnte via endothelialer Dysfunktion das kardiovaskuläre Risiko erhöhen.

Methodik

Wir führten eine prospektive Pilotstudie durch, um die Zusammenhänge zwischen systemischer Gefäßfunktion, Glukosemetabolismus, und Lungenfunktion bei Patienten mit COPD zu untersuchen. Achtzehn Patienten mit stabiler moderat-schwerer COPD (Nichtraucher, 67 % Männer; medianer (1. bis 3. Quartile) FEV1 % Soll 38 % (28–55 %); Body mass index 26 kg/m2 (24–28 kg/m2)) ohne relevante kardiovaskuläre Risikofaktoren wurden untersucht. Die systemische Gefäßfunktion wurde anhand der Fluss-mediierten Dilatation der Arteria brachialis determiniert. Die erhobenen Laborparameter umfassten die Bestimmung des Nüchternblutzuckerspiegel, zirkulierende Insulinkonzentrationen, C-reaktives Protein, und Fibrinogen. Der Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Index wurde errechnet. Alle Untersuchungen wurden zum Zeitpunkt der Erstuntersuchung durchgeführt und nach 12 Monaten wiederholt.

Ergebnisse

Die Fluss-mediierte Dilatation der Arteria brachialis nahm von 13,5 % (11–15 %) zum Zeitpunkt der Erstuntersuchung auf 9,8 % (6–12 %) (p = 0,002) nach 12 Monaten ab, der Nüchternblutzuckerspiegel hingegen stieg im gleichen Zeitraum von 94 mg/dl (86–103 mg/dl) auf 102 mg/dl (94–111 mg/dl) (p = 0,027) und der HOMA-IR Index von 1.2 (0,8–2,1) auf 1,7 (1,2–3,0) (p = 0,023) an. Es zeigt sich ein statistisch signifikanter Zusammenhang zwischen den Veränderungen der endothelialen Dysfunktion und dem Nüchternblutzuckerspiegel (r = − 0,483, p = 0,009), HOMA-IR (r = − 0,441, p = 0,019), und FEV1 (r = 0.336, p = 0.05).

Schlussfolgerung

Ein veränderter Glukosemetabolismus scheint mit einer Progression der endothelialen Dysfunktion bei Patienten verbunden zu sein.

Schlüsselwörter

Kardiovaskuläre Erkrankungen Chronisch Obstruktive Lungenerkrankungen Insulinresistenz Lungenfunktion Vasodilatation 

Notes

Acknowledgments

The authors thank the laboratory staff from the Otto Wagner Hospital and the Department of Clinical Pharmacology (Medical University Vienna) for their help in analyzing the blood samples. This research was supported by the Ludwig Boltzmann Institute for COPD, Department of Respiratory and Critical Care Medicine, Otto Wagner Hospital, Vienna, Austria.

Conflict of interest

Otto C. Burghuber has been serving on advisory board meetings for Boehringer Ingelheim RCV Austria and Nycomed Austria. He has received honorary and consultancy fees from Boehringer Ingelheim, Glaxo-Smith-Kline, Nycomed, and Astra Zeneca not exceeding the amount of $ 5,000 per year. Dr. Burghuber further received unrestricted research support grants from Boehringer-Ingelheim and Astra Zeneca over the past years. Arschang Valipour has been serving on advisory board meetings for Boehringer Ingelheim RCV Austria. He has received honorary and consultancy fees from Boehringer Ingelheim and Astra Zeneca not exceeding the amount of $ 5,000 per year. The other authors declare that they have no competing interests. Matthias Urban, Leyla Ay, Georg-Christian Funk, Philipp Eickhoff, and Michael Wolzt have no conflicts of interest to disclose.

References

  1. 1.
    Macnee W, Maclay J, McAllister D. Cardiovascular injury and repair in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5:824–33.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Curkendall SM, DeLuise C, Jones JK, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease. Saskatchewan Canada cardiovascular disease in COPD patients. Ann Epidemiol. 2006;16:63–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127:1952–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Schunemann HJ, Dorn J, Grant BJ, et al. Pulmonary function is a long-term predictor of mortality in the general population: 29-year follow-up of the Buffalo Health Study. Chest. 2000;118:656–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Eickhoff P, Valipour A, Kiss D, et al. Determinants of systemic vascular function in patients with stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178:1211–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Mills NL, Miller JJ, Anand A, et al. Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax. 2008;63:306–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Barr RG, Mesia-Vela S, Austin JH, et al. Impaired flow-mediated dilation is associated with low pulmonary function and emphysema in ex-smokers: the Emphysema and Cancer Action Project (EMCAP) Study. Am J Respir Crit Care Med. 2007;176:1200–7.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sabit R, Bolton CE, Edwards PH, et al. Arterial stiffness and osteoporosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:1259–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Maclay JD, McAllister DA, Mills NL, Paterson FP, Ludlam CA, Drost EM, Newby DE, Macnee W. Vascular dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;180:513–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Burghuber OC, Valipour A. Knowing chronic obstructive pulmonary disease by heart: cumulating evidence of systemic vascular dysfunction. Am J Respir Crit Care Med. 2009;180:487–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.PubMedCrossRefGoogle Scholar
  12. 12.
    Arcaro G, Cretti A, Balzano S, et al. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105:576–82.PubMedCrossRefGoogle Scholar
  13. 13.
    Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.PubMedCrossRefGoogle Scholar
  14. 14.
    DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996;334:952–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Tarkun I, Arslan BC, Canturk Z, et al. Endothelial dysfunction in young women with polycystic ovary syndrome: relationship with insulin resistance and low-grade chronic inflammation. J Clin Endocrinol Metab. 2004;89:5592–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Sattar N, McCarey DW, Capell H, et al. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation. 2003;108:2957–63.PubMedCrossRefGoogle Scholar
  18. 18.
    von Elm A, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4:e296.CrossRefGoogle Scholar
  19. 19.
    Pojer R, Whitfield JB, Poulos V, et al. Carboxyhemoglobin, cotinine, and thiocyanate assay compared for distinguishing smokers from non-smokers. Clin Chem. 1984;30:1377–80.PubMedGoogle Scholar
  20. 20.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Reddy KG, Nair RN, Sheehan HM, et al. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol. 1994;23:833–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Yeboah J, Folsom AR, Burke GL, et al. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation. 2009;120:502–9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Katakam PV, Tulbert CD, Snipes JA, et al. Impaired insulin-induced vasodilation in small coronary arteries of Zucker obese rats is mediated by reactive oxygen species. Am J Physiol Heart Circ Physiol. 2005;288:H854–60.PubMedCrossRefGoogle Scholar
  26. 26.
    Potenza MA, Addabbo F, Montagnani M. Vascular actions of insulin with implications for endothelial dysfunction. Am J Physiol Endocrinol Metab. 2009;297:E568–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Cardillo C, Nambi SS, Kilcoyne CM, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100:820–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Meigs JB, Hu FB, Rifai N, et al. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004;291:1978–86.PubMedCrossRefGoogle Scholar
  29. 29.
    Engstrom G, Hedblad B, Nilsson P, et al. Lung function, insulin resistance and incidence of cardiovascular disease: a longitudinal cohort study. J Intern Med. 2003;253:574–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Minet C, Vivodtzev I, Tamisier R, et al. Reduced six-minute walking distance, high fat-free-mass index and hypercapnia are associated with endothelial dysfunction in COPD. Respir Physiol Neurobiol. 2012;183:128–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Matthias Helmut Urban
    • 1
  • Leyla Ay
    • 2
  • Georg-Christian Funk
    • 1
  • Otto Chris Burghuber
    • 1
  • Philipp Eickhoff
    • 3
  • Michael Wolzt
    • 4
  • Arschang Valipour
    • 1
  1. 1.Department of Respiratory and Critical Care Medicine, Ludwig Boltzmann Institute for COPDOtto Wagner HospitalViennaAustria
  2. 2.1st Department of Internal MedicineRudolfstiftungViennaAustria
  3. 3.St. Anna Childrens HospitalViennaAustria
  4. 4.Department of Clinical PharmacologyMedical University ViennaViennaAustria

Personalised recommendations