Wiener klinische Wochenschrift

, Volume 125, Issue 21–22, pp 687–695 | Cite as

Differences in the metabolic status of healthy adults with and without active brown adipose tissue

  • Qiongyue Zhang
  • Hongying Ye
  • Qing Miao
  • Zhaoyun Zhang
  • Yi Wang
  • Xiaoming Zhu
  • Shuo Zhang
  • Chuantao Zuo
  • Zhengwei Zhang
  • Zhemin Huang
  • Ruidan Xue
  • Meifang Zeng
  • Haiyan Huang
  • Wanzhu Jin
  • Qiqun Tang
  • Yihui Guan
  • Yiming Li
original article

Summary

Background

Previous studies have proven the existence of active brown adipose tissue (BAT) in adults; however, its effect on systematic metabolism remains unclear.

Aim

The current study was designed to investigate the differences in the metabolic profiles of healthy adults with and without active BAT using positron emission tomography–computed tomography (PET-CT) scans in the un-stimulated state.

Methods

A cross-sectional analysis was performed to assess the health of adults using PET-CT whole-body scans at Huashan Hospital Medical Centre between November 2009 and May 2010. A total of 62 healthy adults with active BAT were enrolled in the BAT-positive group. For each positive subject, a same-gender individual who underwent PET-CT the same day and who had no detectable BAT was chosen as the negative control. Body composition was measured, and blood samples were collected for assays of metabolic profiles and other biomarkers.

Results

In both the male and female groups, BAT-positive individuals were younger and had lower body mass indexes, fasting insulin, insulin resistance, and leptin, but a greater level of high-density lipoprotein cholesterol compared with the negative controls. In the male group, body fat content and levels of tumor necrosis factor-α were significantly lower in the BAT-positive than in the negative control group.

Conclusions

The healthy adults with active BAT in an un-stimulated state had favorable metabolic profiles suggesting that active BAT may be a potential target for preventing and treating obesity and other metabolic disorders.

Keywords

Brown adipose tissue Human Metabolism High-density lipoprotein cholesterol 

Unterschiede im Stoffwechselstatus gesunder Erwachsener mit und ohne aktivem braunem Fettgewebe

Zusammenfassung

Grundlagen

Frühere Studien haben die Existenz von aktivem braunem Fettgewebe (BAT) bei Erwachsenen nachgewiesen. Die Wirkung dieses Gewebes auf den systemischen Stoffwechsel bleibt allerdings unklar.

Ziel

Die vorliegende Studie plante zu erforschen, ob ein Unterschied in den Stoffwechselprofilen gesunder Erwachsener mit beziehungsweise ohne BAT besteht, wobei PET-CT Scans im nicht stimulierten Zustand verwendet wurden.

Methodik

Am Huashan Hospital Medical Center wurde zwischen November 2009 und Mai 2010 eine horizontale Analyse durchgeführt, um die Gesundheit von Erwachsenen zu erfassen, wobei PET-CT Ganzkörper Scans zur Verwendung gelangten. Insgesamt wurden 62 gesunde Erwachsene mit aktivem BAT in die BAT positive Gruppe aufgenommen. Für jede positiv getestete Person wurde als negative Kontrolle eine Person gleichen Geschlechts ausgewählt, die am selben Tag eine PET-CT Untersuchung hatte und bei der kein aktives BAT nachgewiesen werden konnte. Die Körperzusammensetzung wurde gemessen und Blutproben zur Bestimmung von Stoffwechselprofilen und anderer Bio-Marker wurden abgenommen.

Ergebnisse

Sowohl die männlichen als auch die weiblichen BAT positiven Individuen waren jünger und hatten einen geringeren BMI, ein niedrigeres Nüchtern-Insulin, niedrigere Insulinresistenz und Leptin. Nur das HDL-Cholesterin war im Vergleich zur BAT negativen Gruppe erhöht. Bei den BAT positiven Männern war der Körperfettgehalt und die Konzentration von Tumornekrosefaktor-alpha (TNF alpha) signifikant niedriger als bei den BAT negativen Kontrollen.

Schlussfolgerungen

Die gesunden Erwachsenen mit aktivem BAT hatten im nicht-stimulierten Zustand ein günstigeres Stoffwechselprofil. Dies legt nahe, dass das aktive BAT ein mögliches Zielorgan bei der Vorbeugung und Behandlung der Adipositas und anderer Stoffwechselerkrankungen sein könnte.

Schlüsselwörter

Braunes Fettgewebe (BAT) Humaner Metabolismus Stoffwechselprofil HDL-Cholesterin 

Notes

Acknowledgments

The authors thank the staff of PET Center (Huashan Hospital) for their help in performing the study, the staff from Division of Endocrinology and Metabolism and the Center of Laboratory Medicine (Huashan Hospital) for their technical assistance, and the subjects for their participation in the study.

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

References

  1. 1.
    Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.PubMedCrossRefGoogle Scholar
  5. 5.
    Soderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging. 2007;34:1018–22.PubMedCrossRefGoogle Scholar
  6. 6.
    Williams G, Kolodny GM. Method for decreasing uptake of 18F-FDG by hypermetabolic brown adipose tissue on PET. AJR Am J Roentgenol. 2008;190:1406–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Barbaras L, Tal I, Palmer MR, et al. Shareware program for nuclear medicine and PET/CT PACS display and processing. AJR Am J Roentgenol. 2007;188:W565–8.Google Scholar
  9. 9.
    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32:S498–504.Google Scholar
  10. 10.
    Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: classification of energy costs of human physical activities. Med Sci Sports Exerc. 1993;25:71–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6.Google Scholar
  12. 12.
    Stefan N, Pfannenberg C, Haring HU. The importance of brown adipose tissue. N Engl J Med. 2009;361:416–7 (author reply 418–21).Google Scholar
  13. 13.
    Grundy SM, Brewer HB Jr., Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 2010;314:1–16.PubMedCrossRefGoogle Scholar
  15. 15.
    Pardo M, Roca-Rivada A, Seoane LM, Casanueva FF. Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine. 2012;41:374–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Tousignant B, Faraj M, Conus F, et al. Body fat distribution modulates insulin sensitivity in post-menopausal overweight and obese women: a MONET study. Int J Obes (Lond). 2008;32:1626–32.Google Scholar
  17. 17.
    Goropashnaya AV, Herron J, Sexton M, et al. Relationships between plasma adiponectin and body fat distribution, insulin sensitivity, and plasma lipoproteins in Alaskan Yup’ik Eskimos: the Center for Alaska Native Health Research study. Metabolism. 2009;58:22–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Good M, Newell FM, Haupt LM, et al. TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue-influence of BMI and adipose distribution. Diab Vasc Dis Res. 2006;3:26–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Arsenault BJ, Rana JS, Stroes ES, et al. Beyond low-density lipoprotein cholesterol: respective contributions of non-high-density lipoprotein cholesterol levels, triglycerides, and the total cholesterol/high-density lipoprotein cholesterol ratio to coronary heart disease risk in apparently healthy men and women. J Am Coll Cardiol. 2009;55:35–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Li MD. Leptin and beyond: an odyssey to the central control of body weight. Yale J Biol Med. 2011;84:1–7.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Margareto J, Marti A, Martinez JA. Changes in UCP mRNA expression levels in brown adipose tissue and skeletal muscle after feeding a high-energy diet and relationships with leptin, glucose and PPARgamma. J Nutr Biochem. 2001;12:130–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Enriori PJ, Sinnayah P, Simonds SE, et al. Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J Neurosci. 2011;31:12189–97.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci. 2011;31:1873–84.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Siegrist-Kaiser CA, Pauli V, Juge-Aubry CE, et al. Direct effects of leptin on brown and white adipose tissue. J Clin Invest. 1997;100:2858–64.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B. 2006;176:663–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Cancello R, Zingaretti MC, Sarzani R, et al. Leptin and UCP1 genes are reciprocally regulated in brown adipose tissue. Endocrinology. 1998;139:4747–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Korac A, Buzadzic B, Petrovic V, et al. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol. 2008;46:103–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Lecoultre V, Ravussin E. Brown adipose tissue and aging. Curr Opin Clin Nutr Metab Care. 2011;14:1–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshioka K, Yoshida T, Wakabayashi Y, et al. Effects of exercise training on brown adipose tissue thermogenesis in ovariectomized obese rats. Endocrinol Jpn. 1989;36:403–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Qiongyue Zhang
    • 1
  • Hongying Ye
    • 1
  • Qing Miao
    • 1
  • Zhaoyun Zhang
    • 1
  • Yi Wang
    • 1
  • Xiaoming Zhu
    • 1
  • Shuo Zhang
    • 1
  • Chuantao Zuo
    • 2
  • Zhengwei Zhang
    • 2
  • Zhemin Huang
    • 2
  • Ruidan Xue
    • 1
  • Meifang Zeng
    • 1
  • Haiyan Huang
    • 3
  • Wanzhu Jin
    • 4
  • Qiqun Tang
    • 3
  • Yihui Guan
    • 2
  • Yiming Li
    • 1
  1. 1.Division of Endocrinology and MetabolismDepartment of Internal Medicine, Huashan Hospital, Fudan UniversityShanghaiChina
  2. 2.PET Center, Division of Nuclear MedicineHuashan Hospital, Fudan UniversityShanghaiChina
  3. 3.The Key Laboratory of Molecular MedicineMinistry of Education and Institute of Biomedical Sciences, Shanghai Medical College, Fudan UniversityShanghaiChina
  4. 4.The Key Laboratory of Animal Ecology and Conservation BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina

Personalised recommendations