Wiener klinische Wochenschrift

, Volume 125, Issue 19–20, pp 577–590

Review on novel concepts of columnar lined esophagus

  • Johannes Lenglinger
  • Stephanie Fischer See
  • Lukas Beller
  • Enrico P. Cosentini
  • Reza Asari
  • Fritz Wrba
  • Martin Riegler
  • Sebastian F. Schoppmann
Review

Summary

Background

Columnar lined esophagus (CLE) is a marker for gastroesophageal reflux and associates with an increased cancer risk among those with Barrett’s esophagus. Recent studies fostered the development of integrated CLE concepts.

Methods

Using PubMed, we conducted a review of studies on novel histopathological concepts of nondysplastic CLE.

Results

Two histopathological concepts—the squamo-oxyntic gap (SOG) and the dilated distal esophagus (DDE), currently model our novel understanding of CLE. As a consequence of reflux, SOG interposes between the squamous lined esophagus and the oxyntic mucosa of the proximal stomach. Thus the SOG describes the histopathology of CLE within the tubular esophagus and the DDE, which is known to develop at the cost of a shortened lower esophageal sphincter and foster increased acid gastric reflux. Histopathological studies of the lower end of the esophagus indicate, that the DDE is reflux damaged, dilated, gastric type folds forming esophagus and cannot be differentiated from proximal stomach by endoscopy. While the endoscopically visible squamocolumnar junction (SCJ) defines the proximal limit of the SOG, the assessment of the distal limit requires the histopathology of measured multilevel biopsies. Within the SOG, CLE types distribute along a distinct zonation with intestinal metaplasia (IM; Barrett’s esophagus) and/or cardiac mucosa (CM) at the SCJ and oxyntocardiac mucosa (OCM) within the distal portion of the SOG. The zonation follows the pH-gradient across the distal esophagus. Diagnosis of SOG and DDE includes endoscopy, histopathology of measured multi-level biopsies from the distal esophagus, function, and radiologic tests. CM and OCM do not require treatment and are surveilled in 5 year intervals, unless they associate with life quality impairing symptoms, which demand medical or surgical therapy. In the presence of an increased cancer risk profile, it is justified to consider radiofrequency ablation (RFA) of IM within clinical studies in order to prevent the progression to dysplasia and cancer. Dysplasia justifies RFA ± endoscopic resection.

Conclusions

SOG and DDE represent novel concepts fusing the morphological and functional aspects of CLE. Future studies should examine the impact of SOG and DDE for monitoring and management of gastroesophageal reflux disease (GERD).

Keywords

Columnar lined esophagus Barrett’s esophagus Gastroesophageal reflux disease 

Übersicht zu neuen Konzepten des Zylinderepithel-Ösophagus

Zusammenfassung

Hintergrund

Zylinderepithel-Ösophagus (engl. columnar lined esophagus; CLE) zeigt gastroösophagealen Reflux und bedingt bei jenen mit einem Barrett Ösophagus ein erhöhtes Krebsrisiko. Rezente Studien beschreiben ein integriertes morphofunktionales CLE Konzept.

Methodik

Diese PubMed basierte Analyse gibt eine Übersicht zu neuen histopathologischen Konzepten zu CLE ohne Dysplasie.

Ergebnisse

Unsere neue Vorstellung zu CLE wird anhand von zwei neuen histopathologischen Konzepten dargestellt: dem Mukosasegment zwischen Plattenepithel und oxntischer Magenschleimhaut (engl. squamo-oxntic gap; SOG) und dem dilatierten distalen Ösophagus (engl. dilated distal esophagus; DDE). Als Folge des Reflux entsteht das SOG zwischen dem von Plattenepithel ausgekleideten Ösophagus und des von oxyntischer Mukosa ausgekleideten proximalen Magens. SOG beschreibt die Histologie des CLE im tubulären Ösophagus und DDE, welcher auf Kosten des durch den Reflux verkürzten unteren Ösophagussphinkters entsteht und damit vermehrten Rückfluss des sauren Mageninhalts begünstigt. Morphologische Untersuchungen des Ausgangs der Speiseröhre zeigten, dass der DDE Reflux-geschädigter, dilatierter, magenähnliche Falten bildender Ösophagus ist und in der Endoskopie nicht vom proximalen Magen unterschieden werden kann. Während die proximale Grenze des SOG der endoskopisch definierbaren Platten-Zylinderepithelgrenze entspricht, kann die untere Grenze des SOG nur mittels Fusion von Biopsie-Lokalisation und der Histologie von aus diesem Bereich entnommenen Gewebeproben bestimmt werden. Im SOG ordnen sich die CLE Typen entsprechend einer typischen proximalen-distalen Verteilung mit intestinaler Metaplasie (IM, Barrett Ösophagus) ± Kardia Schleimhaut (CM) an der Platten-Zylinderepithelgrenze und Oxyntokardia (OCM) Mukosa im distalen Abschnitt des SOG. Die Ausrichtung folgt dem Reflux-bedingte pH Gradienten entlang des unteren Ösophagus. Die Diagnose von SOG und DDE erfolgt mittels Endoskopie, Histologie von Multi-Level Biopsien aus dem Ausgang der Speiseröhre sowie Funktionstests und Röntgenuntersuchungen. CM und OCM an sich bedürfen keiner Therapie und sollen in 5 Jahren nachuntersucht werden, nur assoziierte Reflux Beschwerden, welche die Lebensqualität beeinträchtigen, sollen medikamentös oder chirurgisch behandelt werden. Bei entsprechendem Krebsrisiko ist es gerechtfertigt, bei IM ohne Dysplasie eine Radiofrequenzablation (RFA) im Rahmen klinischer Studien zu erwägen, um damit die Entstehung von Dysplasie und Karzinom zu verhindern. Dysplasie rechtfertigt eine RFA ± endoskopischer Resektion.

Schlussfolgerungen

SOG und DDE sind neue Konzepte, welche Morphologie und Funktion des Zylinderepithel-Ösophagus integrieren. Die Zukunft wird zeigen, welche Bedeutung diese neuen Konzepte für Diagnose und Therapie der gastroösophagealen Refluxkrankheit haben.

Schlüsselwörter

Zylinderepithel Ösophagus Barrett Ösophagus Endoskopie Gastroösophageale Refluxkrankheit Histopathologie 

References

  1. 1.
    Dent J, El-Serag HB, Wallander MA, et al. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut. 2005;54:710.PubMedGoogle Scholar
  2. 2.
    Ruigomez A, Wallander MA, Johansson S, et al. Natural history of gastroesophageal reflux disease diagnosed in UK general practice. Aliment Pharmacol Ther. 2004;20:751.PubMedGoogle Scholar
  3. 3.
    Kotzan J, Wade W, Yu HH. Assessing NSAID prescription use as a predisposing factor for gastroesophageal reflux disease in a Med-icaid population. Pharm Res. 2001;18:1376.Google Scholar
  4. 4.
    Becher A, Dent J. Systematic review: ageing and gastro-oesophageal reflux disease symptoms, esophageal function and reflux oesophagitis. Aliment Pharmacol Ther. 2011;33(4):442–54.PubMedGoogle Scholar
  5. 5.
    Kamolz T, Velanovich V. The impact of disease and treatment on health-related quality of life in patients suffering from GERD. In: Granderath FA, Kamolz T, Pointner R, editors. Gastroesophageal reflux disease, principles of disease, diagnosis and treatment. New York: Springer Wien; 2006. S. 287–98.Google Scholar
  6. 6.
    Velanovich V. The development of the GERD-HRQL symptom severity instrument. Dis Esophagus. 2007;20:130.PubMedGoogle Scholar
  7. 7.
    Ronkainen J, Aro P, Storskrubb T, et al. Gastro-oesophageal reflux symptoms and health-related quality of life in the adult general population—the Kalixanda study. Aliment Pharmacol Ther. 2006;23:1725.PubMedGoogle Scholar
  8. 8.
    Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101:1900.PubMedGoogle Scholar
  9. 9.
    Labenz J, Jaspersen D, Kulig M, et al. Risk factors for erosive esophagitis: a multivariate analysis based on the ProGERD study initiative. Am J Gastroenterol. 2004;99:1652.PubMedGoogle Scholar
  10. 10.
    Sharma P, Dent J, Armstrong D, et al. The development and validation of an endoscopic grading system for Barrett’s esophagus: the Prague C & M criteria. Gastroenterology. 2006;131:1392.PubMedGoogle Scholar
  11. 11.
    Chandrasoma PT. Columnar lined esophagus: what it is and what it tells us. Eur Surg. 2006;38(3):197–209.Google Scholar
  12. 12.
    Lenglinger J, Eisler M, Wrba F, et al. Update: histopathology-based definition of gastroesophageal reflux disease and Barrett’s esophagus. Eur Surg. 2008;40(4):165–75.Google Scholar
  13. 13.
    Lenglinger J, Izay B, Eisler M, et al. Barrett’s esophagus: size of the problem and diagnostic value of a novel histopathology classification. Eur Surg. 2009;41(1):26–39.Google Scholar
  14. 14.
    Goldblum JR. Controversies in the diagnosis of Barrett esophagus ad Barrett-related dysplasia. Arch Pathol Lab Med. 2010;134:1479–84.PubMedGoogle Scholar
  15. 15.
    Odze RD. What the gastroenterologist needs to know about the histology of Barrett’s esophagus. Curr Opin Gastroenterol. 2011;27(4):389–96.PubMedGoogle Scholar
  16. 16.
    Öberg S, Peters JH, DeMeester TR, et al. Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease. Ann Surg. 1997;226(4):522–32.PubMedGoogle Scholar
  17. 17.
    Ayazi S, Tanhankar A, DeMeester SR, et al. The impact of gastric distension on the lower esophageal sphincter and its exposure to acid gastric juice. Ann Surg. 2010;252:57–62.PubMedGoogle Scholar
  18. 18.
    Bredenoord AJ. High-resolution manometry—bliss upon bliss for the esophagology? Eur Surg. 2007;39(3):176–86.Google Scholar
  19. 19.
    Savarino E, Gemignani L, Pohl D, et al. Oesophageal motility and bolus transit abnormalities increase in parallel with the severity of gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2011;34(4):476–86.PubMedGoogle Scholar
  20. 20.
    Lagergren J, Bergström R, Lindgren A, et al. Symptomatic gastro-esophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med. 1999;340:825.PubMedGoogle Scholar
  21. 21.
    Spechler SJ, Fitzgerald RC, Prasad GA, Wang KK. History, molecular mechanism, and endoscopic treatment of Barrett’s esophagus. Gastroenterology. 2010;138(3):854–69.PubMedGoogle Scholar
  22. 22.
    Spechler SJ. Screening and surveillance for Barrett’s esophagus—an unresolved dilemma. Nat Clin Pract Gastroenterol Hepatol. 2007;4(9):470–1.PubMedGoogle Scholar
  23. 23.
    Ronkainen J, Aro P, Storskrubb T, et al. High prevalence of gastro- esophageal reflux symptoms and esophagitis with or without symptoms in the general adult Swedish population: a Kalixanda study report. Scand J Gastroenterol. 2005;40:275.PubMedGoogle Scholar
  24. 24.
    Rex DK, Cummings OW, Shaw M, et al. Screening for Barrett’s esophagus in colonoscopy patients with and without heartburn. Gastroenterology. 2003;125:1670–7.PubMedGoogle Scholar
  25. 25.
    Gerson LB, Shetler K, Triadafilopoulos G. Prevalence of Barrett’s esophagus in asymptomatic individuals. Gastroenterology. 2002;123:461–7.PubMedGoogle Scholar
  26. 26.
    Dulai GS, Guha S, Kahn KL, et al. Preoperative prevalence of Barrett’s esophagus in esophageal adenocarcinoma: a systematic review. Gastroenterology. 2002;122:26–33.PubMedGoogle Scholar
  27. 27.
    Oezcelik A, DeMeester SR. General anatomy of the esophagus. Thorac Surg Clin. 2011;21(2):289–97.PubMedGoogle Scholar
  28. 28.
    DeHertogh G, Ectors N, van Eyken P, Geboes K. Review article: the nature of oesophageal injury in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2006;24(Suppl 2):17–26.Google Scholar
  29. 29.
    Glickman JN, Fox V, Antolini DA, et al. Morphology of the cardia and significance of carditis in pediatric patients. Am J Surg Pathol. 2002;26(8):1032–9.PubMedGoogle Scholar
  30. 30.
    Chandrasoma PT, Der R, Ma Y, et al. Histology of the gastroesophageal junction. An autopsy study. Am J Surg Pathol. 2000;24(3):402–9.PubMedGoogle Scholar
  31. 31.
    Allison PR, Johnstone AS. The oesophagus lined with gastric mucous membrane. Thorax. 1953;8:87–101.PubMedGoogle Scholar
  32. 32.
    Chandrasoma P, Wijetunge S, Ma Y, DeMeester S, et al. The dilated distal esophagus: a new entity that is the pathologic basis of early gastroesophageal reflux disease. Am J Surg Pathol. 2011;35(12):1873–81.PubMedGoogle Scholar
  33. 33.
    Bonavina L, Saino GI, Bona D, et al. Magnetic augmentation of the lower esophageal sphincter: results of a feasibility clinical trial. J Gastroinest Surg. 2008;12:2133–40.Google Scholar
  34. 34.
    Rieder F, Biancani P, Harnett K, et al. Inflammatory mediators in gastroesophageal reflux disease: impact on esophageal motility, fibrosis, and carcinogenesis. Am J Physiol. 2010;298:G571–81.Google Scholar
  35. 35.
    Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137:1776–84.PubMedGoogle Scholar
  36. 36.
    Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esoph. 2008;21:43–50.Google Scholar
  37. 37.
    Marsman WA, van Sandick JW, Tygat GNJ, ten Kate FJW, van Lanschot JJB. The presence and mucin histochemistry of cardiac type mucosa at the esophagogastric junction. Am J Gastroenterol. 2004;99:212–7.PubMedGoogle Scholar
  38. 38.
    Lenglinger J, Ringhofer C, Eisler M, Sedivy R, Wrba F, Zacherl J, Cosentini EP, Prager G, Heafner M, Riegler M. Histopathology of columnar lined esophagus in patients with gastroesophageal reflux disease. Wien Klin Wochenschr. 2007;119(13/14):405–11.PubMedGoogle Scholar
  39. 39.
    Ringhofer C, Lenglinger J, Izay B, et al. Histopathology of the endoscopic esophagogastric junction in patients with gastroesophageal reflux disease. Wien Klin Wochenschr. 2008;120(11):350–9.PubMedGoogle Scholar
  40. 40.
    Petterson GB, Bombeck CT, Nyhus LM. Influence of hiatal hernia on lower esophageal sphincter function. Ann Surg. 1981;193(2):214–20.Google Scholar
  41. 41.
    Hill LD, Kozarek RA, Kraemer SJ, Aye RW, Mercer CD, Low DE, Pope CE II. The gastroesophageal flap valve: in vitro and in vivo observations. Gastrointest Endosc. 1996;44(5):541–7.PubMedGoogle Scholar
  42. 42.
    Korn O, Csendes A, Burdiles P, Braghetto I, Stein HJ. Anatomic dilatation of the cardia and competence of the lower esophageal sphincter: a clinical and experimental study. J Gastrointest Surg. 2000;4(4):398–406.PubMedGoogle Scholar
  43. 43.
    Mattioli S, D’Ovidio F, Pilotti V, Di Simone MP, Lugaresi ML, Bassi F, Brusori S. Hiatus hernia and intrathoracic migration of esophagogastric junction in gastroesophageal reflux disease. Dig Dis Sci. 2003;48(9):1823–31.PubMedGoogle Scholar
  44. 44.
    Kahrilas PJ, Shi G, Manka M, Joehl RJ. Increased frequency of transient lower esophageal sphincter relaxation induced by gastric distention in reflux patients with hiatal hernia. Gastroenterology. 2000;118(4):688–95.PubMedGoogle Scholar
  45. 45.
    Jones MP, Sloan SS, Rabine JC, Ebert CC, Huang CF, Kahrilas PJ. Hiatal hernia size is the dominant determinant of esophagitis presence and severity in gastroesophageal reflux disease. Am J Gastroenterol. 2001;96(6):1711–7.PubMedGoogle Scholar
  46. 46.
    Miholic J, Hafez J, Lenglinger J, et al. Hiatal hernia, Barrett’s esophagus and long term symptom control after laparoscopic fundoplication for gastroesophageal reflux disease. Surg Endosc. 2012. (ahead of print)Google Scholar
  47. 47.
    Csendes A, Smok G, Burdiles P, Quesada F, Huertas C, Rojas J, Korn O. Prevalence of Barrett’s esophagus by endoscopy and histologic studies: a prospective evaluation of 306 control subjects and 376 patients with symptoms of gastroesophageal reflux. Dis Esophagus. 2000;13:5–11.PubMedGoogle Scholar
  48. 48.
    Hirota WM, Loughney TM, Lazas DJ, Maydonovitch CL, Rholl V, Wong RKH. Specialized intestinal metaplasia, dysplasia, and cancer of the esophagus and esophagogastric junction: prevalence and clinical data. Gastroenterology. 1999;116:277–85.PubMedGoogle Scholar
  49. 49.
    Barrett NR. Chronic peptic ulcer of the oesophagus and “oesophagitis”. Br J Surg. 1950;38:175–82.PubMedGoogle Scholar
  50. 50.
    Barrett NR. The lower esophagus lined by columnar epithelium. Surgery. 1957;41:881–94.PubMedGoogle Scholar
  51. 51.
    Sarbia M, Donner A, Gabbert HE. Histopathology of the gastroesophageal junction: a study on 36 operation specimens. Am J Surg Pathol. 2002;26:1207–12.PubMedGoogle Scholar
  52. 52.
    Jain R, Aquino D, Harford WV, et al. Cardiac epithelium is found infrequently in the gastric cardia. Gastroenterology. 1998;114:A160 (Abstract).Google Scholar
  53. 53.
    Chandrasoma P, Wijetunge S, DeMeester SR, et al. The histologic squamo-oxyntic gap: an accurate and reproducible diagnostic marker of gastroesophageal reflux disease. Am J Surg Pathol. 2010;34(11):1574–81.PubMedGoogle Scholar
  54. 54.
    Glickman JN, Spechler SJ, Souza RF, et al. Multilayered epithelium in mucosal biopsy specimens from the gastroesphageal junction region is a histologic marker of gastroesophageal reflux disease. Am J Surg Pathol. 2009;33:818–25.PubMedGoogle Scholar
  55. 55.
    Shi L, Der R, Ma Y, et al. Gland ducts and multilayered epithelium in mucosal biopsies from gastroesophageal-junction region are useful in characterizing esophageal location. Dis Esoph. 2005;18(2):87–92.Google Scholar
  56. 56.
    Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst. 2011;103:1049–57.PubMedGoogle Scholar
  57. 57.
    Guindi M, Riddell RH. Histology of Barrett’s esophagus and dysplasia. Gastrointest Endosc Clin N Am. 2003;13(2):349–68.PubMedGoogle Scholar
  58. 58.
    Wijetunge S, Ma Y, DeMeester S, et al. Association of adenocarcinomas of the distal esophagus, “gastroesophageal junction”, and “gastric cardia” with gastric pathology. Am J Surg Pathol. 2010;34(10):1521–7.PubMedGoogle Scholar
  59. 59.
    Chandrasoma P, Wickramasinghe K, Ma Y, DeMeester T. Adenocarcinomas of the distal esophagus and “gastric cardia” are predominantly esophageal carcinomas. Am J Surg Pathol. 2007;31(4):569–75.PubMedGoogle Scholar
  60. 60.
    SD Oh, DeMeester SR. Pathophysiology and treatment of Barrett’s esophagus. World J Surg. 2010;16(30):3762–72.Google Scholar
  61. 61.
    Milano F, van Baal JWPM, Buttar NS, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132:2412–21.PubMedGoogle Scholar
  62. 62.
    Castillo D, Puig S, Iglesias M, et al. Activation of the BMP4 pathway and early expression of CDX2 characterize non-specialized columnar metaplasia in a human model of Barrett’s esophagus. J Gastrointest Surg. 2012;16(2):227–37.PubMedGoogle Scholar
  63. 63.
    Reflux DeMeesterSR. Barrett’s and adenocarcinoma of the esophagus: can we disrupt the pathway? J Gastroinest Surg. 2010;14:941–5.Google Scholar
  64. 64.
    Theodorou D, Ayazi S, DeMeester SR, et al. Intraluminal pH and goblet cell density in Barrett’s esophagus. J Gastrointest Surg. 2012;16(3):469–74.PubMedGoogle Scholar
  65. 65.
    Sharma P, Falk GW, Weston AP, et al. Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4:566–72.PubMedGoogle Scholar
  66. 66.
    Hvid-Jensen F, Pedersen L, Mohr Drewes A, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–83.PubMedGoogle Scholar
  67. 67.
    De Jonge PJ, van Blankenstein M, Looman CW, et al. Risk of malignant progression in patients with Barrett’s oesophagus: Dutch nationwide cohort study. Gut. 2010;59(8):1030–6.PubMedGoogle Scholar
  68. 68.
    Jung KW, Talley NJ, Romero Y, et al. Epidemiology and natural history of intestinal metaplasia of the gastroesophageal junction and Barrett’s esophagus: a population-based study. Am J Gastroenterol. 2011;106:1447–55.PubMedGoogle Scholar
  69. 69.
    Sikkema M, De Jonge PJF, Steyerberg EW, Kuipers EJ. Risk of esophageal adenocarcinoma and mortality in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2010;8:235–44.PubMedGoogle Scholar
  70. 70.
    Desai TK, Krishnan K, Samala N, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut. 2012;61:970–6.PubMedGoogle Scholar
  71. 71.
    Ronkainen J, Aro P, Storskrubb T, et al. Prevalence of Barrett’s esophagus in the general population: an endoscopy study. Gastroenterology. 2005;129:1825–31.PubMedGoogle Scholar
  72. 72.
    Hayeck TJ, Kong CY, Spechler SJ, et al. The prevalence of Barrett’s esophagus in the US: estimates from a simulation model confirmed by SEER data. Dis Esoph. 2010;23(6):451–7.Google Scholar
  73. 73.
    Thomas T, Abrams KR, De Caestecker JS, Robinson RJ. Meta analysis: cancer risk in Barrett’s oesophagus. Aliment Pharm. 2007;26:1465–77.Google Scholar
  74. 74.
    Rubenstein JH, Mattek N, Eisen G. Age- and sex-specific yield of Barrett’s esophagus by endoscopy indication. Gastrointest Endosc. 2010;71:21–7.PubMedGoogle Scholar
  75. 75.
    Curvers WL, ten Kate FJ, Krishnadath KK, et al. Low-grade dysplasia in Barrett’s esophagus: overdiagnosed and underestimated. Am J Gastroenterol. 2010;105(7):1523–30.PubMedGoogle Scholar
  76. 76.
    Rutegard M, Shore R, Lu Y, et al. Sex differences in the incidence of gastrointestinal adenocarcinomas in Sweden 1970–2006. Eur J Cancer. 2010;46:1093–100.PubMedGoogle Scholar
  77. 77.
    Lagergren J, Mattsson F. No further increase in the incidence of esophageal adenocarcinoma in Sweden. In J Cancer. 2011;129:513–6.Google Scholar
  78. 78.
    Löfdahl HE, Lane A, Lu Y, et al. increased population prevalence of reflux and obesity in the United Kingdom compared with Sweden: a potential explanation for the difference in incidence of esophageal adenocarcinoma. Gastroenterol Hepatol. 2011;23:128–32.Google Scholar
  79. 79.
    Eypasch E, Williams JI, Wood-Dauphinee S, et al. Gastrointestinal quality of life index: development, validation and application of a new instrument. Br J Surg. 1995;82:216–22.PubMedGoogle Scholar
  80. 80.
    Theisen J, Stein HJ, Feith M, et al. Preferred location for the development of esophageal adenocarcinoma within a segment of intestinal metaplasia. Surg Endosc. 2006;20(2):235–8.PubMedGoogle Scholar
  81. 81.
    Corley DA, Levin TR, Habel LA, et al. Surveillance and survival in Barrett’s adenocarcinomas: a population based study. Gastroenterology. 2002;122:633–40.PubMedGoogle Scholar
  82. 82.
    Weickert U, Wolf A, Schröder C, et al. Frequency, histopathological findings, and clinical significance of cervical heterotopic gastric mucosa (gastric inlet patch): a prospective study in 300 patients. Dis Esoph. 2011;24(2):63–8.Google Scholar
  83. 83.
    Rosztoczy A, Izbeki F, Nemeth IB, et al. Detailed esophageal function and morphological analysis shows high prevalence of gastroesophageal reflux disease and Barrett’s esophagus in patients with cervical inlet patch. Dis Esoph. 2011;22:1442–2050.Google Scholar
  84. 84.
    Chong VA, Jalihal A. Caervical inleet patch: case series and literature review. South Med J. 2006;99(8):865–9.PubMedGoogle Scholar
  85. 85.
    Tutuian R, Castell DO. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am J Gastroenterol. 2004;99(6):1011–9.PubMedGoogle Scholar
  86. 86.
    Agrawal A, Roberts J, Sharma N, et al. Symptoms with acid and nonacid reflux may be produced by different mechanisms. Dis Esoph. 2009;22(5):467–70.Google Scholar
  87. 87.
    Woodland P, Al-Zinaty M, Yazaki E, Sifrim D. In vivo evaluation of acid-induced changes in oesophageal mucosa integrity and sensitivity in non-erosive reflux disease. Gut. 2012. (ahead of print)Google Scholar
  88. 88.
    Bredenoord AJ, Tutuian R, Smout AJ, Castell DO. Technology review: esophageal impedance monitoring. Am J Gastroenterol. 2007;102(1):187–94.PubMedGoogle Scholar
  89. 89.
    Kwiatek MA, Pandolfino JE, Hirano I, Kahrilas PJ. Esophagogastric junction distensibility assessed with an endoscopic functional luminal imaging probe (EndoFLIP). Gastrointest Endosc. 2010;72(2):272–8.PubMedGoogle Scholar
  90. 90.
    Kwiatek MA, Kahrilas K, Soper NJ, et al. Esophagogastric junction distensibility after fundoplication assessed with a novel functional luminal imaging probe. J Gastrointest Surg. 2010;14(2):268–76.PubMedGoogle Scholar
  91. 91.
    Scharitzer M, Pokieser P, Schober E, et al. Morphological findings in dynamic swallowing studies of symptomatic patients. Eur Radiol. 2002;12(5):1139–44.PubMedGoogle Scholar
  92. 92.
    Kauppi JT, Oksala N, Salo JA, et al. Locally advanced esophageal adenocarcinoma: response to neoadjuvant chemotherapy and survivial predicted by (18F)FDG-PET/CT. Acta Oncol. 2012;636–44.Google Scholar
  93. 93.
    Klayton T, Li T, Yu JQ, et al. The role of qualitative and quantitative analysis of F18-FDG positron emission tomography in predicting pathologic response following chemoradiotherapy in patients with esophageal carcinoma. J Gastrointest Cancer. 2012. (ahead of print)Google Scholar
  94. 94.
    Covotta F, Piretta L, Badiali D, et al. Functional magnetic resonance in the evaluation of oesophageal motility disorders. Gastroenterol Res Pract. 2011;367639.Google Scholar
  95. 95.
    Griffin JM, Reed CE, Denlinger CE. Utility of restaging endoscopic ultrasound after neoadjuvant therapy for esophageal cancer. Ann Thorac Surg. 2012;93(6):1855–9.PubMedGoogle Scholar
  96. 96.
    Lord RVN, DeMeester SR, Peters JH, et al. Hiatal hernia, lower esophageal sphincter incompetence, and effectiveness of Nissen fundoplication in the spectrum of gastroesophageal reflux disease. J Gastrointest Surg. 2008;13(4):602–10.PubMedGoogle Scholar
  97. 97.
    Oelschlager BK, Ma KC, Soares RV, et al. A broad assessment of clinical outcomes after laparoscopic antireflux surgery. Ann Surg. 2012;256:87–94.PubMedGoogle Scholar
  98. 98.
    Triadafilopoulos G. Proton pump inhibitor in Barrett’s esophagus: pluripotent but controversial. Eur Surg. 2008;40(2):58–65.Google Scholar
  99. 99.
    Fein M, Seyfried F. Is there a role for anything other than a Nissen’s operation? J Gastrointest Surg. 2010;14(Suppl 1):67–74.Google Scholar
  100. 100.
    Shan CX, Zhang W, Zheng XM, et al. Evidence-based appraisal in laparoscopic Nissen and Toupet fundoplications for gastroesophageal reflux disease. World J Gastroenterol. 2010;16(24):3063–71.PubMedGoogle Scholar
  101. 101.
    Galmiche JP, Hatlebakk J, Attwood S, et al. Laparoscopic antireflux surgery vs esomeprazole treatment for chronic GERD. The LOTUS randomized clinical trial. JAMA. 2011;305(19):1969–77.PubMedGoogle Scholar
  102. 102.
    Shaheen NJ, Sharma P, Overholt BF, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360:2277–88.PubMedGoogle Scholar
  103. 103.
    Shaheen NJ, Overholt BF, Sampliner RE, et al. Durability of radiofrequency ablation in Barrett’s esophagus with dysplasia. Gastroenterology. 2011;141:460–68.PubMedGoogle Scholar
  104. 104.
    Fleischer DE, Overholt BF, Sharma VK, et al. Endoscopic ablation of Barrett’s esophagus: a multicenter study with 2.5-year follow up. Gastrointest Endosc. 2008;68(5):867–76.PubMedGoogle Scholar
  105. 105.
    Lyday WD, Corbett FS, Kuperman DA, et al. Radiofrequency ablation of Barrett’s esophagus: outcomes of 429 patients from a multicenter community practice registry. Endoscopy. 2010;42:272–8.PubMedGoogle Scholar
  106. 106.
    Fleischer DE, Overholt BF, Sharma VK, et al. Endoscopic radiofrequency ablation for Barrett’s esophagus: 5-year outcomes from a prospective multicenter trial. Endoscopy. 2010;42(10):781–9.PubMedGoogle Scholar
  107. 107.
    Fleischer DE, Odze R, Overholt BF, et al. The case for endoscopic treatment of non-dysplastic and low grade dysplastic Barrett’s esophagus. Dig Dis Sci. 2010;55:1918–31.PubMedGoogle Scholar
  108. 108.
    Van Vilsteren FGI, Pouw RE, Seewald S, et al. Stepwise radical endoscopic resection versus radiofrequency ablation for Barrett’s oesophagus with high-grade dysplasia or early cancer: a multicenter randomized trial. Gut. 2011;60(6):765–73.PubMedGoogle Scholar
  109. 109.
    Liu W, Hahn H, Odze RD, Goyal RK. Metaplastic esophageal columnar epithelium without goblet cells shows DNA content abnormalities similar to goblet cell-containing epithelium. Am J Gastroetnerol. 2009;104(4):816–24.Google Scholar
  110. 110.
    Hahn HP, Blount PL, Ayub K, et al. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol. 2009;33(7):1006–15.PubMedGoogle Scholar
  111. 111.
    Sikkema M, Looman CWN, Steyerberg EW, et al. Predictors for neoplastic progression in patients with Barrett’s esophagus: a prospective cohort study. Am J Gastroenterol. 2011;106(7):1231–8.PubMedGoogle Scholar
  112. 112.
    Parrilla P, Martinez deHLF, Ortiz A, et al. Long-term results of a randomized prospective study comparing medical and surgical treatment of Barrett’s esophagus. Ann Surg. 2003;237(3):291–8.PubMedGoogle Scholar
  113. 113.
    Rossi M, Barreca M, de Bartoli N, et al. Efficacy of Nissen fundoplication versus medical therapy in the regression of low-grade dysplasia in patients with Barrett’s esophagus. Ann Surg. 2006;243:58–63.PubMedGoogle Scholar
  114. 114.
    Zaninotto G, Parente P, Salvador R, et al. Long term follow up of Barrett’s epithelium: medical versus antireflux surgical therapy. J Gastrointest Surg. 2011. (ahead print)Google Scholar
  115. 115.
    O’Connell K, Velanovich V. Effects of Nissen fundplication on endoscopic endoluminal radiofrequency ablation of Barrett’s esophagus. Surg Endosc. 2011;25(3):830–34.PubMedGoogle Scholar
  116. 116.
    Goers TA, Leao P, Cassera MA, et al. Concomitant endoscopic radiofrequency ablation and laparoscopic reflux operative results in more effective and efficient treatment of Barrett’s esophagus. J Am Coll Surg. 2011;213(4):486–92.PubMedGoogle Scholar
  117. 117.
    Schoppmann SF, Prager G, Langer FB, et al. Open versus minimally invasive esophagectomy: a single-center case controlled study. Surg Endosc. 2010;24(12):3044–53.PubMedGoogle Scholar
  118. 118.
    Rubenstein JH, Mattek N, Eisen G. Age- and sex-specific yield of Barrett’s esophagus by endoscopy indication. Gastrointest Endosc. 2010;71:21–7.PubMedGoogle Scholar
  119. 119.
    Wykypiel H, Wetscher GJ, Klingler P, Glaser K. The Nissen fundoplication: indication, technical aspects and postoperative outcome. Langenbecks Arch Surg. 2005;390:495–502.PubMedGoogle Scholar
  120. 120.
    Kadri S, Lao-Sirieix P, Fitzgerald RC. Developing a nonendoscopic screening test for Barrett’s esophagus. Biomark Med. 2011;5(3):397–404.PubMedGoogle Scholar
  121. 121.
    Fikrova P, Stetina R, Hronek M, et al. Application of the comet assay method in clinical studies. Wien Klin Wochenschr. 2011;123(23–24):693–99.PubMedGoogle Scholar
  122. 122.
    Shukla R, Abidi WM, Richards-Kortum R, et al. Endoscopic imaging: how far are we from real-time histology? World J Gastroinest Endosc. 2011;3(10):183–194.Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Johannes Lenglinger
    • 1
  • Stephanie Fischer See
    • 1
  • Lukas Beller
    • 1
  • Enrico P. Cosentini
    • 1
  • Reza Asari
    • 1
  • Fritz Wrba
    • 2
  • Martin Riegler
    • 1
  • Sebastian F. Schoppmann
    • 1
  1. 1.Manometry Lab & Upper GI Service, Department of SurgeryUniversity Clinic of Surgery, CCC-GET, Medical University of Vienna, Vienna General HospitalViennaAustria
  2. 2.Institute for Clinical PathologyMedical University of Vienna, Vienna General HospitalViennaAustria

Personalised recommendations