Wiener klinische Wochenschrift

, Volume 125, Issue 15–16, pp 467–473 | Cite as

Effects of sevoflurane and desflurane on oxidative stress during general anesthesia for elective cesarean section

  • Saban Yalcin
  • Harun Aydoğan
  • Hasan Husnu Yuce
  • Ahmet Kucuk
  • Mahmut Alp Karahan
  • Mehmet Vural
  • Aysun Camuzcuoğlu
  • Nurten Aksoy
original article

Summary

Background

Anesthetic agents might considerably influence maternal-fetal oxidative stress and antioxidants during cesarean section (CS). The aim of this study was to investigate the effects of desflurane and sevoflurane on oxidative stress parameters both in mothers and newborns undergoing elective CS.

Materials and methods

Eighty ASA physical status I–II, term parturients undergoing elective CS under general anesthesia were randomized to desflurane (Group D) and sevoflurane (Group S) groups. Blood samples were collected from mothers before operation and postoperatively and umbilical artery samples were obtained at delivery. Total oxidant status (TOS), total antioxidant capacity (TAC) status, lipid hydroperoxide (LOOH), and free sulfhydryl (–SH) levels were measured and oxidative stress index was calculated. Secondary outcomes included maternal hemodynamics.

Results

Preoperative LOOH, TOS, OSI, TAC, and –SH levels were similar among groups. Postoperative maternal serum LOOH, TOS, and OSI levels were significantly increased in Group D compared to Group S (p = 0.003, p = 0.005, p = 0.04; respectively). Postoperative umbilical artery LOOH, TOS, OSI levels were also significantly increased in Group D compared to Group S (p = 0.04, p = 0.02, p = 0.01; respectively). Postoperative TOS (p = 0.001, < 0.001 respectively) and OSI (p = 0.003, < 0.001 respectively) levels in both Group D and Group S were statistically significantly decreased compared to preoperative levels. Postoperative LOOH and –SH levels in Group S (p = 0.04, 0.029 respectively) were statistically significantly decreased compared to preoperative levels. There were no significant differences in TAC and –SH levels among groups (p = nonsignificant [n.s.]). Maternal perioperative mean blood pressure and heart rate were similar among groups (p = n.s.).

Conclusion

Oxidative stress indices might be modified with preferred anesthetic agent and sevoflurane showed more favorable effects than desflurane in view of oxidative stress.

Keywords

Cesarean section Oxidative stress Desflurane Sevoflurane 

Wirkungen von Sevofluran und Desfluran auf den oxidativen Stress während Allgemeinnarkose bei elektivem Kaiserschnitt

Zusammenfassung

Hintergrund

Anästhetika könnten den materno-fötalen oxidativen Stress und Antioxidantien während einer Sectio Caesarea (CS) erheblich beeinflussen. Ziel der vorliegenden Studie war es, die Wirkungen von Desfluran und Sevofluran auf Parameter des oxidativen Stresses sowohl bei Müttern, die sich einer elektiven CS unterziehen, als auch bei deren Neugeborenen zu untersuchen.

Material und Methoden

Achtzig zum Termin mittels elektiver CS unter Allgemeinnarkose Gebärende im ASA physikalischen Status I–II wurden randomisiert entweder Desfluran (Gruppe D) oder Sevofluran (Gruppe S) zugeteilt. Blutproben wurden von den Müttern prä- und postoperativ abgenommen, Nabelschnurblut bei der Geburt. Der Gesamt-Oxidations-Status (TOS), die totale antioxidative Kapazität (TAC), Lipid Hydroperoxid (LOOH) sowie die freien Sulfhydrylgruppen (–SH) wurden bestimmt. Der oxidative Stress Index (OSI) wurde berechnet. Die Hämodynamik der Mutter war ein sekundäres Outcome.

Ergebnisse

Die präoperativen LOOH, TOS, OSI, TAC und –SH Konzentrationen waren bei beiden Gruppen ähnlich. Die postoperativen mütterlichen LOOH, TOS, OSI Serum Konzentrationen waren in Gruppe D im Vergleich zur Gruppe S signifikant erhöht (p = 0,003, p = 0,005, p = 0,04; respektive). Postoperative Nabelschnur-Arterien Werte von LOOH, TOS, OSI waren in Gruppe D im Vergleich zur Gruppe S auch signifikant erhöht (p = 0,04, p = 0,02, p = 0,01; respektive). Postoperative TOS (p = 0,001, < 0,001 respektive) und OSI (p = 0,003,< 0,001 respektive) Werte waren sowohl in Gruppe D als auch Gruppe S statistisch signifikant im Vergleich zu den präoperativen Werten erniedrigt. Postoperative LOOH und –SH Konzentrationen waren in Gruppe S (p = 0,04, 0,029 respektive) im Vergleich zu präoperativen Werten statistisch signifikant erniedrigt. Auch die postoperative LOOH und –SH Werte der Gruppe S (p = 0,04, 0,029 respektive) waren im Vergleich zu den präoperativen Werten statistisch signifikant erniedrigt. Es bestand kein signifikanter Unterschied der TAC und –SH Werte zwischen den Gruppen (p = nicht signifikant [n.s.]). Auch der mittlere perioperative Blutdruck und die Herzfrequenz waren bei beiden Gruppen ähnlich (p = n.s).

Schlussfolgerungen

Oxidative Stress Indikatoren können durch das bevorzugte Anästhetikum beeinflusst werden. Sevofluran zeigte bezüglich oxidativen Stress günstigere Wirkungen als Desfluran.

Schlüsselwörter

Sectio caesarea Oxidativer Stress Desfluran Sevofluran 

Notes

Conflict of interest

The authors declare that there are no actual or potential conflicts of interest in relation to this article.

References

  1. 1.
    Fogel I, Pinchuk I, Kupferminc MJ, Lichtenberg D, Fainaru O. Oxidative stress in the fetal circulation does not depend on mode of delivery. Am J Obstet Gynecol. 2005;193:241–6.Google Scholar
  2. 2.
    Singh SK, Tandon A, Kumari S, Ravi RN, Ray GN, Batra S. Changes in antioxidant enzymes and lipid peroxidation in hyaline membrane disease. Indian J Pediatr. 1998;65:609–14.Google Scholar
  3. 3.
    Saugstad OD. Bronchopulmonary dysplasia and oxidative stress: are we closer to an understanding of the pathogenesis of BPD? Acta Paediatr. 1997;86:1277–82.Google Scholar
  4. 4.
    Huggle S, Hunsaker JC 3rd, Coyne CM, Sparks DL. Oxidative stress in sudden infant death syndrome. J Child Neurol. 1996;11:433–8.Google Scholar
  5. 5.
    Gitto E, Reiter RJ, Karbownik M, et al. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate. 2002;81:146–57.Google Scholar
  6. 6.
    Greco A, Minghetti L, Puopolo M, et al. Plasma levels of 15-F(2t)-isoprostane in newborn infants are affected by mode of delivery. Clin Biochem. 2007;40:1420–2.Google Scholar
  7. 7.
    Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol. 1999;13:347–52.Google Scholar
  8. 8.
    Hung TH, Lo LM, Chiu TH, et al. A longitudinal study of oxidative stress and antioxidant status in women with uncomplicated pregnancies throughout gestation. Reprod Sci. 2010;17:401–9.Google Scholar
  9. 9.
    Hung TH, Chen SF, Hsieh TT, Lo LM, Li MJ, Yeh YL. The associations between labor and delivery mode and maternal and placental oxidative stress. Reprod Toxicol. 2011;31:144–50.Google Scholar
  10. 10.
    Fainaru O, Almog B, Pinchuk I, Kupferminc MJ, Lichtenberg D, Many A. Active labour is associated with increased oxidisibility of serum lipids ex vivo. BJOG. 2002;109:938–41.Google Scholar
  11. 11.
    Vakilian K, Ranjbar A, Zarganjfard A, et al. On the relation of oxidative stress in delivery mode in pregnant women; a toxicological concern. Toxicol Mech Methods. 2009;19:94–9.Google Scholar
  12. 12.
    Rogers MS, Mongelli JM, Tsang KH, Wang CC, Law KP. Lipid peroxidation in cord blood at birth: the effect of labour. Br J Obstet Gynaecol. 1998;105:739–44.Google Scholar
  13. 13.
    Inanc F, Kilinc M, Kiran G, et al. Relationship between oxidative stress in cord blood and route of delivery. Fetal Diagn Ther. 2005;20:450–3.Google Scholar
  14. 14.
    Sridhar MG, Setia S, John M, Bhat V, Nandeesha H, Sathiyapriya V. Oxidative stress varies with the mode of delivery in intrauterine growth retardation: association with Apgar score. Clin Biochem. 2007;40:688–91.Google Scholar
  15. 15.
    Roes EM, Raijmakers MT, Hendriks JC, Langeslag M, Peters WH, Steegers EA. Maternal antioxidant concentrations after uncomplicated pregnancies. Free Radic Res. 2005;39:95–103.Google Scholar
  16. 16.
    Yaacobi N, Ohel G, Hochman A. Reactive oxygen species in the process of labor. Arch Gynecol Obstet. 1999;263:23–4.Google Scholar
  17. 17.
    Schulpis KH, Lazaropoulou C, Vlachos GD, et al. Maternal-neonatal 8-hydroxy-deoxyguanosine serum concentrations as an index of DNA oxidation in association with the mode of labor and delivery. Acta Obstet Gynecol Scand. 2007;86:320–6.Google Scholar
  18. 18.
    Sedlic F, Pravdic D, Ljubkovic M, Marinovic J, Stadnicka A, Bosnjak ZJ. Differences in production of reactive oxygen species and mitochondrial uncoupling as events in the preconditioning signaling cascade between desflurane and sevoflurane. Anesth Analg. 2009;109:405–11.Google Scholar
  19. 19.
    Sivaci R, Kahraman A, Serteser M, Sahin DA, Dilek ON. Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clin Biochem. 2006;39:293–8.Google Scholar
  20. 20.
    Allaouchiche B, Debon R, Goudable J, Chassard D, Duflo F. Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth Analg. 2001;93(4):981–5.Google Scholar
  21. 21.
    Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103–11.Google Scholar
  22. 22.
    Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem. 2004;37:112–9.Google Scholar
  23. 23.
    Nourooz-Zadeh J. Ferrous ion oxidation in presence of xylenol orange for detection of lipid hydroperoxides in plasma. Methods Enzymol. 1999;300:58–62.Google Scholar
  24. 24.
    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.Google Scholar
  25. 25.
    Hu ML, Louie S, Cross CE, Motchnik P, Halliwell B. Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med. 1993;121:257–62.Google Scholar
  26. 26.
    Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res. 1998;39:1529–42.Google Scholar
  27. 27.
    McKeown MJ, Hall ND, Corvalan JR. Defective monocyte accessory function due to surface sulphydryl (SH) oxidation in rheumatoid arthritis. Clin Exp Immunol. 1984;56:607–13.Google Scholar
  28. 28.
    Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37:277–85.Google Scholar
  29. 29.
    Turkan H, Aydin A, Sayal A, Karahalil B. The effect of sevoflurane and desflurane on markers of oxidative status in erythrocyte. Toxicol Ind Health. 2011;27:181–6.Google Scholar
  30. 30.
    Turkan H, Aydin A, Sayal A, Eken A, Akay C, Karahalil B. Oxidative and antioxidative effects of desflurane and sevoflurane on rat tissue in vivo. Arh Hig Rada Toksikol. 2011;62:113–9.Google Scholar
  31. 31.
    Yalcin S, Aydogan H, Serdaroglu H, et al. Impact of volatile anesthetics on oxidative stress in patients undergoing laparoscopic cholecystectomy for gallstones. Turkiye Klinikleri J Med Sci. 2012;32:112–9.Google Scholar
  32. 32.
    Paamoni-Keren O, Silberstein T, Burg A, et al. Oxidative stress as determined by glutathione (GSH) concentrations in venous cord blood in elective cesarean delivery versus uncomplicated vaginal delivery. Arch Gynecol Obstet. 2007;276:43–6.Google Scholar
  33. 33.
    Hracsko Z, Safar Z, Orvos H, Novak Z, Pal A, Varga IS. Evaluation of oxidative stress markers after vaginal delivery or Caesarean section. In Vivo. 2007;21:703–6.Google Scholar
  34. 34.
    Lurie S, Matas Z, Boaz M, Fux A, Golan A, Sadan O. Different degrees of fetal oxidative stress in elective and emergent cesarean section. Neonatology. 2007;92:111–5.Google Scholar
  35. 35.
    Compagnoni G, Lista G, Giuffrè B, Mosca F, Marini A. Coenzyme Q10 levels in maternal plasma and cord blood: correlations with mode of delivery. Biol Neonate. 2004;86:104–7.Google Scholar
  36. 36.
    Khaw KS, Wang CC, Ngan Kee WD, Pang CP, Rogers MS. Effects of high inspired oxygen fraction during elective caesarean section under spinal anesthesia on maternal and fetal oxygenation and lipid peroxidation. Br J Anaesth. 2002;88:18–23.Google Scholar
  37. 37.
    Khaw KS, Ngan Kee WD, Chu CY, et al. Effects of different inspired oxygen fractions on lipid peroxidation during general anesthesia for elective caesarean section. Br J Anaesth. 2010;105:355–60.Google Scholar
  38. 38.
    Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M. Antioxidant protection of propofol and its recycling in erythrocyte membranes. Am J Respir Crit Care Med. 2002;165:54–60.Google Scholar
  39. 39.
    Serdaroglu H, Yalcin S, Erdamar H, et al. The effect of propofol and thiopental on maternal and fetal oxidative stress parameters in Cesarean section. Anestezi Dergisi. 2010;18:213–19.Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Saban Yalcin
    • 1
  • Harun Aydoğan
    • 1
  • Hasan Husnu Yuce
    • 1
  • Ahmet Kucuk
    • 1
  • Mahmut Alp Karahan
    • 1
  • Mehmet Vural
    • 2
  • Aysun Camuzcuoğlu
    • 2
  • Nurten Aksoy
    • 3
  1. 1.Department of Anesthesiology and ReanimationHarran University Medical FacultySanliurfaTurkey
  2. 2.Department of Obstetrics and GynecologyHarran University Medical FacultySanliurfaTurkey
  3. 3.Department of Clinical BiochemistryHarran University Medical FacultySanliurfaTurkey

Personalised recommendations