Wiener klinische Wochenschrift

, Volume 125, Issue 11–12, pp 316–325 | Cite as

Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients

  • Vašková Janka
  • Kočan Ladislav
  • Firment Jozef
  • Vaško Ladislav
original article


A prospective observational study of parenteral selenium supplementation started in January 2008 which included 72 septic patients with APACHE II scores ranging from 19 to 40 after admission.

Patients were divided into two major groups: one with a continual infusion of sodium selenite at 750 µg/24 h for 6 days and a placebo group followed by subgroups according to the presence or absence of surgical procedure. Routine biochemical and hematological para-meters were determined continuously. Sequential Organ Failure Assessment (SOFA) scores were calculated in two-day intervals.

Patients who died had a higher Acute Physiology and Chronic Health Evaluation (APACHE) II score, lower albumin on the 3rd days of therapy and higher C-reactive protein (CRP) on the 6th days of therapy. Statistically, there was no significant difference in the comparison of CRP, fibrinogen, albumin, plasma proteins, or neutrophil to lymphocyte counts during the 6 days in all subgroups. There was a significant difference in the comparison of leukocytes on the 6th day of therapy. Glutathione peroxidase and glutathione reductase activity was increased in selenium subgroups with negative correlation in placebo subgroups during the therapy. A downward trend in SOD activity, more appreciable in selenium groups, seemed to be a reflection of lower superoxide radical production. This is biased more as a result of GPx activity restoration, preventing further peroxidation of organic substrates and cyclic formation of other radicals, than actual attenuation of their production.

Selenium substitution increased selenium dependent antioxidant enzyme activity and, in comparing mortality in groups, we found a 16.7 % decrease in mortality in favor of supplementation with selenium.


Oxidative stress Sepsis Selenium Artificial nutrition 

Wiederherstellung der Aktivität von antioxidativen Enzymen durch Selen bei septischen Patienten


Eine prospektive Beobachtungsstudie der Wirkung einer parenteralen Gabe von Selen wurde im Jänner 2008 begonnen. Es wurden 72 Patienten mit Sepsis und einem APACHE II Score zwischen 19 und 40 bei Aufnahme in die Studie aufgenommen.

Die Patienten wurden in 2 große Gruppen eingeteilt: einer Gruppe wurde eine kontinuierliche Infusion von 750 mg Na-Selenit/24 h 6 Tage lang verabreicht – der anderen Placebo. Es wurden dann Subgruppen gebildet, je nachdem, ob operative Maßnahmen gesetzt wurden. Routine biochemische und hämatologische Parameter wurden kontinuierlich erhoben. Die SOFA Scores wurden alle 2 Tagen errechnet.

Die verstorbenen Patienten hatten einen höheren APACHE II Score, sowie ein niedrigeres Albumin am 3. Tag und ein höheres CRP am 6. Tag. Statistisch bestand kein signifikanter Unterschied im Vergleich des CRP, des Fibrinogens, des Albumins, der Plasmaproteine bzw. der Neutrophilen und Lymphozyten Zahl aller Subgruppen während der 6 Beobachtungstage. Die Leukozytenzahl war am 6. Tag statistisch signifikant unterschiedlich. Die Aktivität der Glutathionperoxidase (GPx) und der Glutathionreduktase war in den Selen-Subgruppen während der Therapie erhöht mit einer negativen Korrelation in den Placebo-Untergruppen.

Ein Abwärtstrend der SOD Aktivität, der in den Selen-Untergruppen deutlicher war, schien eine Folge einer geringeren Produktion von Superoxyd Radikalen zu sein. Wahrscheinlich ist das aber eher auf eine Wiederherstellung der GPx Aktivität (die vor einer weiteren Peroxydation der organischen Substrate und einer zyklischen Bildung von anderen Radikalen schützt) als auf eine tatsächliche Verminderung ihrer Produktion zurückzuführen.

Substitution mit Selen erhöhte die Aktivität der Selen-abhängigen antioxidativen Enzyme. Ein Vergleich der Mortalität beider Gruppen ergab eine um 16,7 % niedrigere Sterberate der mit Selen behandelten Patienten.


Oxidativer Stress Sepsis Selen Künstliche Ernährung 


  1. 1.
    Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, Vale LD, Battison CG, Jenkinson DJ, Cook JA, Scottish Intensive care Glutamine or seleNium Evaluative Trial Trials Group. Randomized trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011; 342:d1542, doi:10.1136/bmj.d1542.PubMedCrossRefGoogle Scholar
  2. 2.
    Angstwurm MW, Engelmann L, Zimmermann T, Lehmann C, Spes CH, Abel P, Strauss R, meier-Hellmann A, Insel R, Radke J, Schüttler J, Gärtner R. Selenium in Intensive Care (SIC): results of a prospective, randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007;35(1):118–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Bela P, Bahl R, Sane AS, Sawant PH, Shah VR, Mishra VV, Trivedi HL. Oxidative stress status: possible guideline for clinical management of critically ill patients. Panminerva Med. 2001;43(1):27–31.PubMedGoogle Scholar
  4. 4.
    Bhat MA, Bhat JI, Kawoosa MS, Ahmad SM, Ali SW. Organism-specific platelet response and factors affecting survival in thrombocytopenic very low birth weight babies with sepsis. J Perinatol. 2009;29(10):702–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Blakytny R, Harding JJ. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem J. 1992;288(Pt 1):303–7.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Briz O, Romero MR, Martinez-Becerra P, Macias RI, Perez MJ, Jimenez F, San Martin FG, Marin JJ. OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J Biol Chem. 2006;281(41):30326–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Chan WS, Dedon CP. The biological and metabolic fates of endogenous DNA damage products. J Nucleic Acids. 2010;13, Article ID 929047, doi:10.4061/2010/929047.Google Scholar
  8. 8.
    de Menezes CC, Dorneles AG, Sperotto RL, Duarte MM, Schetinger MR, Loro VL. Oxidative stress in cerebrospinal fluid of patients with aseptic and bacterial meningitis. Neurochem Res. 2009;34(7):1255–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Faviere W, Boechat T. Sepsis: thrombocytopenia is bad, not recovering thrombocytopenia is too bad. Crit Care. 2011;15(Supp 1):P440.PubMedCentralCrossRefGoogle Scholar
  10. 10.
    Finley JW, Duffield A, Ha P, Vanderpool RA, Thomson CD. Selenium supplementation affects the retention of stable isotopes of selenium in human subjects consuming diets low in selenium. Br J Nutr. 1999;82(5):357–60.PubMedGoogle Scholar
  11. 11.
    Firment J, Hudak V, Grendel T. Difficulties in implementation of the recommendations for the diagnosis and treatment of severe sepsis and sepsis shock. Anesteziologie a Intenzivní Medicína 2008;19(5):252–9.Google Scholar
  12. 12.
    Forceville X, Laviolle B, Annane D, Vitoux D, Bleichner G, Korach JM, Cantais E, Georges H, Soubirou JL, Combes A, Bellissant E. Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care. 2007;11(4):R73.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Geoghegan M, McAuley D, Eaton S, Powell-Tuck J. Selenium in critical illness. Curr Opin Crit Care. 2006;12(2):136–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Hardy G, Hardy I. Selenium: the Se-XY nutraceutical. Nutrition. 2004;20(6):590–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Heyland D. Selenium supplementation in critically ill patients: can too much of a good thing be a bad thing? Crit Care. 2007;11(4):153.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Supp 4):13–9.CrossRefGoogle Scholar
  17. 17.
    Kharb S, Singh V, Ghalaut PS, Sharma A, Singh GP. Role of oxygen free radicals in shock. J Assoc Physicians India. 2000;48(10):956–7.PubMedGoogle Scholar
  18. 18.
    Kuklinski B, Zimmermann T, Schweder R. Decreasing mortality in acute pancreatitis with sodium selenite. Clinical results of 4 years antioxidant therapy. Med Klin (Munich). 1995;90 (Supp 1):36–41.Google Scholar
  19. 19.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29:530–8.CrossRefGoogle Scholar
  20. 20.
    Mahagita C, Grassl SM, Piyachaturawat P, and Ballatori N. Human organic anion transporter 1B1 and 1B3 function as bidirectional carriers and do not mediate GSH-bile acid cotransport. Am J Physiol Gastrointest Liver Physiol 2007;293(1):G271–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Manzanares W, Biestro A, Torre MH, Galusso F, Facchin G, Hardy G. High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med. 2011;37(7):1120–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Manzanares W, Hardy G. The role of prebiotics and synbiotics in critically ill patients. Curr Opin Clin Nutr Metab Care. 2008;11(6):782–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Meisner M. Biomarkers of sepsis: clinically useful? Curr Opin Crit Care. 2005;11(5):473–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Menges T, Engel J, Weters I, Wagner RM, Little S, Ruwoldt R, Wollbrueck M, Hempelmann G. Changes in blood lymphocyte populations after multiple trauma: association with posttraumatic complications. Crit Care Med. 1999;27(4):733–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Mishra V, Baines M, Perry SE, McLaughlin PJ, Carson J, Wenstone R, Shenkin A. Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr. 2007;26(1):41–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Rayman MP. The importance of selenium to human health. Lancet, 2000;356(9225):233–41.CrossRefGoogle Scholar
  27. 27.
    Ritter C, Andrades M, Frota Júnior ML, Bonatto F, Pinho RA, Polydoro M, Klamt F, Pinheiro CT, Menna-Barreto SS, Moreira JC, Dal-Pizzol F. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003;29(10):1782–9Google Scholar
  28. 28.
    Salama A, Sakr Y, Reinhart K. The role of selenium in critical illness: Basic science and clinical implications. Indian J Crit Care Med. 2007;11(3):127–38.CrossRefGoogle Scholar
  29. 29.
    Valenta J, Brodska H, Drabek T, Hendl J, Kazda A. High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med. 2011;37(5):808–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Wollin MS, Ahmad M, Gao Q, Gupte SA. Cytosolic NAD(P)H regulation of redox signaling and vascular oxygen sensing. Antioxid Redox Signal. 2007;9(6):671–8.CrossRefGoogle Scholar
  31. 31.
    Záhorec R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5–14.PubMedGoogle Scholar
  32. 32.
    Zuurbier CJ, Eerbeek O, Goedhart PT, Struys EA, Verhoeven NM, Jakobs C, Ince C. Inhibition of the pentose phosphate pathway decreases ischemia-reperfusion-induced creatine kinase release in the heart. Cardiovascular Res. 2004;62:145–53.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Vašková Janka
    • 1
  • Kočan Ladislav
    • 2
  • Firment Jozef
    • 2
  • Vaško Ladislav
    • 1
  1. 1.Institute of Medical and Clinical Biochemistry, Faculty of MedicinePavol Jozef Šafárik University in KošiceKošiceSlovak Republic
  2. 2.1st Clinic of Anaesthesiology and Intensive Care MedicineLouis Pasteur University Hospital in KošiceKošiceSlovak Republic

Personalised recommendations