Wiener klinische Wochenschrift

, Volume 124, Issue 15–16, pp 504–515

Characterization of the extended-spectrum b-lactamases and determination of the virulence factors of uropathogenic Escherichia coli strains isolated from children

  • Branka Bedenić
  • Jasmina Vraneš
  • Sabine Hofmann-Thiel
  • Marija Tonkić
  • Anita Novak
  • Viljemka Bučević-Popovic
  • Harald Hoffmann
original article

Summary

Background and aim

The aim of the study was to characterize ESBL-producing uropathogenic Escherichia coli (UPEC) strains isolated in children. That included the investigation of virulence factors and the analysis of the types of β-lactamases at the molecular genetic level.

Material and methods

During the 2-year study period, 77 ESBL-producing E. coli strains were recovered from urine samples of febrile children with significant bacteriuria hospitalized at one Croatian hospital. Susceptibility of isolates to bactericidal serum activity was tested by Shiller and Hatch method, while adhesin expression was determined by agglutination methods. Characterization of ESBLs was performed by PCR with specific primers for ESBLs and by sequencing of blaESBL genes. Genotyping of the E. coli isolates was performed by pulsed-field gel electrophoresis (PFGE).

Results

Twenty-seven (35.1 %) and 50 (64.9 %) ESBL-producing UPEC strains were isolated in neonates and infants, respectively. Of 70 strains investigated for the presence of virulence factors, adhesins were detected in 48.6 % strains (8.6 % in the neonate and 40 % in the infants group) giving a statistically significant difference in adhesin expression between the two groups (p < 0.01). Hemolysin was produced by 84.3 %, whereas 70 % of strains were serum-resistant. The blaTEM gene was detected in 22 (28 %) and blaSHV gene in 57 strains (74 %), whereas blaCTX-M gene was detected in only two isolates (2.5%). In ten isolates, blaTEM and blaSHV were simultaneously detected. Sequencing of blaSHV genes revealed that SHV-5 β-lactamase was by far the most prevalent and was found in 51 strains (66 %). The strains were clonally related as demonstrated by PFGE and assigned into ten clusters.

Conclusions

Infection control measures should be employed and the consumption of expanded-spectrum cephalosporins in the hospital should be restricted.

Keywords

Escherichia coli Virulence Urinary tract infections Children Extended-spectrum β-lactamases 

Charakterisierung der extended spectrum b-Lactamasen (ESBL) und Bestimmung der von Kindern isolierten uropathogenen Virulenzfaktoren von Escherichia coli (E. coli) Stämmen

Zusammenfassung

Hintergrund und Ziel der Studie

Ziel der Studie war es, von Kindern isolierte ESBL produzierende uropathogene E. coli (UPEC) Stämme zu charakterisieren und die Typen der β-Lactamasen auf molekular-genetischem Niveau zu analysieren.

Material und Methoden

Während der 2 jährigen Studienperiode wurden 77 ESBL produzierende E coli Stämme aus Harnproben von an einem kroatischen Spital stationär aufgenommenen Kindern isoliert. Mittels der Shiller – Hatch Methode wurde die Empfindlichkeit der Isolate auf Aktivität von bakterizidem Serum getestet. Die Adhesin Expression wurde mit Agglutinationsmethoden untersucht. Die Charakterisierung der ESBL erfolgte mittels PCR mit spezifischen Primers für ESBL und durch Sequenzierung der blaESBL Gene. Die Gentypisierung der E. coli Isolate wurde mittels puls-feld-gel- Elektrophorese (PGFE) durchgeführt.

Ergebnisse

ESBL produzierende UPEC Kulturen wurden aus Harnproben von 27 (35,1 %) Neugeborenen und von 50 (64,9 %) älteren Kindern isoliert. Von den 70 auf das Vorhandensein von Virulenzfaktoren untersuchten Kulturen wurden bei 48,6 % Adhesine entdeckt (8,6 % bei den Neugeborenen und 40 % bei den Älteren). Die Adhesin Expression beider Gruppen unterschied sich demnach signifikant (p < 0,01). Hämolysin wurde von 84,3 % produziert. Siebzig Prozent der Kulturen waren Serumresistent. Das blaTEM Gen wurde in 22 (28 %) und das blaSHV Gen in 57 (74 %) Kulturen nachgewiesen. Das blaCTX-M Gen konnte aber nur in zwei Isolaten 2,5 % entdeckt werden. Die Sequenzierung der blaSHV Gene zeigte, dass die SHV – 5 β – Lactamase bei weitem am häufigsten war. Sie wurde bei 51 Kulturen (66 %) gefunden. Durch PFGE konnte gezeigt werden, dass die Kulturen Klon-mäßig mit einander verwandt waren.

Schlussfolgerung

Maßnahmen zur Vermeidung einer Infektion sollten ergriffen werden. Der Einsatz von Cephalosporinen mit erweitertem Spektrum sollte im Spitalsbereich eingeschränkt werden.

Schlüsselwörter

Beta-laktamasen Escherichia coli Virulenzfaktoren Kinder Harnweginfektionen 

References

  1. 1.
    Bradford PA. Extended-spectrum b-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Jacoby GA, Munoz-Price LS. The new b-lactamases. N Engl J Med. 2005;352:380–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Bonnet R. Growing group of extended-spectrum b-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceae producing extended-spectrum b-lactamases in the community. J Antimicrob Chemother. 2005;56:52–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Pallecchi L, Bartoloni A, Fiorelli C, et al. Rapid dissemination and diversity of CTX-M extended-spectrum b-lactamase genes in commensal Escherichia coli isolates from healthy children from low resource settings in Latina America. Antimicrob Agents Chemother. 2007;51:2720–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Lartigue MF, Zinsius C, Wenger A, Bille J, Poirel L, Nordman P. Extended-spectrum b-lactamases of the CTX-M type now in Switzerland. Antimicrob Agents Chemother. 2007;51:2855–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L. Prevalence and molecular epidemiology of CTX-M b-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrob Agents Chemother. 2003;47:3724–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Pournaras S, Ikonomidis A, Kristo I, Tsakris A, Maniatis A. CTX-M enzymes are the most common extended-spectrum b-lactamases among Escherichia coli in a tertiary Greek hospital. J Antimicrob Chemother. 2004;54:574–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Canton R, Oliver A, Coque TM. Epidemiology of extended-spectrum b-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12 year period. J Clin Microbiol. 2002; 40:1237–43.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamasaki K, Komatsu M, Yamashita T. Production of CTX-M-3 extended-spectrum b-lactamase and IMP-1 metallo-b-lactamase by five Gram-negative bacilli: survey of clinical isolates from seven laboratories collected in 1998 and 2000, in the Kinki region of Japan. J Antimicrob Chemother. 2003;51:631–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Yu WL, Winokur P, Von Stein DL. First description of CTX-M-β-lactamases (CTX-M-14 and CTX-M-3) in Taiwan. Antimicrob Agents Chemother. 2002; 46:1098–1100.PubMedCrossRefGoogle Scholar
  12. 12.
    Chanawong A, M’Zalli FH, Heritage J. Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14 among Enterobacteriaceae in the People’s Republic of China. Antimicrob Agents Chemother. 2002;46:630–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Quinteros M, Radice M, Gardella N. Extended-spectrum b-lactamases in Buenos Aires, public hospitals. Antimicrob Agents Chemother. 2003;47:2864–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Calbo E, Romani V, Xercavins M, et al. Risk factors for community-onset urinary tract infections due to Escherichia coli harbouring extended-spectrum b-lactamases. J Antimicrob Chemother. 2006;57:780–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Delinska-Galinska A, Kurlenda J, Kozielska E, Borkowska A, Luczak G, Plata-Nazar K. Prevalence of ESBL strains in urinary tract infections in children in 1996 and 2004. Przegl Epidemiol. 2006;60:59–64.PubMedGoogle Scholar
  16. 16.
    Uzunović-Kamberović S, Bedenić B, Vraneš J. Predominance of SHV-5 b-lactamase in community acquired urinary tract infections. Clin Microbiol Infect. 2007;13:820–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Hryniewicz K, Szczypa K, Sulikowska A, Jankowski K, Betlejewska K, Hryniewicz W. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother. 2007;47:773–80.CrossRefGoogle Scholar
  18. 18.
    Vranes J, Kruzic V, Sterk-Kuzmanovic N, Schoenwald S. Virulence characteristics of Escherichia coli strains causing asymptomatic bacteriuria. Infection 2003;31:216–20.PubMedGoogle Scholar
  19. 19.
    Vranes J. Hemagglutination ability and adherence to the Buffalo green monkey kidney cell line of uropathogenic Escherichia coli. APMIS. 1997;105:831–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Schiller NL, Hatch RA. The serum sensitivity, colony morphology, serogroup specificity, and outer membrane protein of Pseudomonas aeruginosa strains isolated from several clinical sites. Diagn Microbiol Infect Dis. 1983;1:145–7.PubMedCrossRefGoogle Scholar
  21. 21.
    CLSI. Performance standards for antimicrobial susceptibility testing methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Eighteen informational supplement. CLSI document M100-S18. Wayne: Clinical and Laboratory Standards Institute; 2008.Google Scholar
  22. 22.
    Rasheed JK, Anderson GJ, Yigit H, et al. Characterization of the extended-spectrum b-lactamase reference strain, Klebsiella pneumoniae K6, (ATCC 700603) which produces the novel enzyme SHV-18. Antimicrob Agents Chemother. 2000;44:2382–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Jarlier V, Nicolas MH, Fournier G, Philippon A. Extended broad-spectrum b-lactamases conferring transferable resistance to newer b-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988;10:867–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Elwell LP, Falkow S. The characterization of R plasmids and the detection of plasmid-specified genes. In: Lorian V editor. Antibiotics in laboratory medicine. 2nd edn. Baltimore: Williams and Wilkins; 1986. p. 683–721.Google Scholar
  25. 25.
    Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV b-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15:398–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Arlet G, Brami G, Decre D, Flippo A, Gaillot O, Lagrange PH, Philippon, A. Molecular characterization by PCR restriction fragment polymorphism of TEM b-lactamases. FEMS Microbiol Lett. 1995;134:203–8.PubMedGoogle Scholar
  27. 27.
    Woodford N, Ward ME, Kaufmann ME, et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum b-lactamases in the UK. J Antimicrob Chemother. 2006;54:735–43.CrossRefGoogle Scholar
  28. 28.
    Pagani L, Mantengoli E, Migliavacca R, et al. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum b-lactamase in Northern Italy. J Clin Microbiol. 2004;42:2523–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Woodford N, Fagan, EJ, Ellington, MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum b-lactamases. J Antimicrob Chemother. 2006; 57:154–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaufman ME. Pulsed-field gel electrophoresis. In: Woodfor N, Johnsons A, editors. Molecular bacteriology. Protocols and clinical applications. 1st edn. New York: Humana Inc. Totowa; 1998. p. 33–51.Google Scholar
  31. 31.
    Tenover F, Arbeit R, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbio. 1995;2233–9.Google Scholar
  32. 32.
    Empel J, Baraniak A, Literacka E, et al. Molecular survey of b-lactamases conferring resistance to newer b-lactams in Enterobacteriaceae isolates from Polish hospitals. Antimicrob Agents Chemother. 2008; 52:2449–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee J, Pai H, Kim Y, et al. Control of extended-spectrum b-lactamase producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother. 2007;60:629.PubMedCrossRefGoogle Scholar
  34. 34.
    Tonkić M, Goić-Barišić I, Punda-Polić V. Prevalence and antimicrobial resistance of extended-spectrum b-lactamase producing Escherichia coli and Klebsiella pneumoniae in a University Hospital Split. Int Microbiol. 2005; 8:119–24.PubMedGoogle Scholar
  35. 35.
    Spanu T, Luzzaro F, Perilli M, Amicosante G, Toniolo A, Fadda G. Italian ESBL study group Occurrence of extended-spectrum b-lactamases in members of the family Enterobacteriaceae in Italy: implication for resistance to b-lactams and other antimicrobial drugs. Antimicrob Agents Chemother. 2002;46:196–202.PubMedCrossRefGoogle Scholar
  36. 36.
    Goosens H. Mystic program: summary of European data from 1997–2000. Diagn Microbiol Infect Dis. 2001;41:183–9.CrossRefGoogle Scholar
  37. 37.
    Yu Y, Zhou W, Chen Y, Ding Y, Ma Y. Epidemiologic and antibiotic resistance study on extended-spectrum b-lactamase producing Escherichia coli and Klebsiella pneumoniae in Zhejinang Province. Chin Med J. 2002;115:1479–82.PubMedGoogle Scholar
  38. 38.
    Gales AC, Sader HH, Jones RH. Respiratory tract pathogens isolated from patients hospitalized with suspected pneumonia in Latin America; frequency of occurrence and antimicrobial susceptibility profile: results from SENTRY Antimicrobial Resistance Program (1997–2000). Diagn Microbiol Infect Dis. 2002; 44:301–11.PubMedCrossRefGoogle Scholar
  39. 39.
    Tash H, Hakki-Bahar I. Molecular characterization of TEM and SHV-derived extended-spectrum b-lactamases in hospital-based Enterobacteriaceae in Turkey. Jpn J Infect Dis. 2005;58:162–7.Google Scholar
  40. 40.
    Prodinger WM, Fille M, Bauernfeind A, et al. Molecular epidemiology of Klebsiella pneumoniae producing SHV-5 b-lactamase: parallel outbreaks due to multiple plasmid transfer. J Clin Microbiol. 1996;34:564–8.PubMedGoogle Scholar
  41. 41.
    Bauernfeind A, Rosenthal E, Eberlein E, Holley M, Schweighart S. Spread of Klebsiella pneumoniae producing SHV-5 b-lactamase among hospitalized patients. Infection 1993;21:24–8.CrossRefGoogle Scholar
  42. 42.
    Pragai Z, Koczian Z, Nagy E. Characterization of the extended-spectrum b-lactamases and determination of the antibiotic susceptibilities of Klebsiella pneumoniae isolates in Hungary. J Antimicrob Chemother. 1998;42:401–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Gniadkowski M, Schneider I, Jungwirth R, Hryniewicz W, Bauernfeind A. Ceftazidime-resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5 type extended-spectrum b-lactamases. Antimicrob Agents Chemother. 1998;4:514–20.Google Scholar
  44. 44.
    Vatopoulos AC, Philippon A, Tzouvelekis LS, Komninou Z, Legakis NJ. Prevalence of a transferable SHV-5 type b-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother. 1990;26:635–48.PubMedCrossRefGoogle Scholar
  45. 45.
    Miranda G, Castro N, Leanos B, Valenzuela A, Garza-Ramos U, Rojas T, et al. Clonal and horizontal dissemination of Klebsiella pneumoniae expressing SHV-5 extended-spectrum b-lactamase in a Mexican Pediatric hospital. J Clin Microbiol. 2004;42:30–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Bedenic B, Randegger C, Stobberingh E, Haechler H. Molecular epidemiology of extended-spectrum β-lactamases from Klebsiella pneumoniae strains, isolated in Zagreb, Croatia. Eur J Clin Microbiol Infect Dis. 2001;20:505–8.Google Scholar
  47. 47.
    Bedenic B, Schmidt H, Herold S, et al. Spread of Klebsiella pneumoniae producing SHV-5 b-lactamase in Dubrava University Hospital, Zagreb. J Chemother. 2005;17:367–75.Google Scholar
  48. 48.
    Vranić-Ladavac M, Bošnjak Z, Beader N, Barišić N, Kalenić S, Bedenić B. Clonal spread of CTX-M producing Klebsiella pneumoniae in Croatian hospital. J Med Microbiol. 2010;59:1069–78.PubMedCrossRefGoogle Scholar
  49. 49.
    Bedenić B, Vraneš J, Bošnjak Z, Marijan T, Mlinarić-Džepina A, Kukovec T, Anušić M, Beader N, Barl P, Leskovar V, Kalenić S. Emergence of CTX-M group 1 extended-spectrum b-lactamase-producing Klebsiella pneumoniae strains in the community. Med Glas. 2010;1:32–9.Google Scholar
  50. 50.
    Payne DJ, Marriot MS, Amyes SGB. Characterization of a unique ceftazidime-hydrolyzing b-lactamase, TEM-E2. J Med Microbiol. 1990;12:131–4.CrossRefGoogle Scholar
  51. 51.
    Essack S. Treatment options for extended-spectrum b-lactamase producers. FEMS Microbiol Lett. 2000;190:181–4.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Branka Bedenić
    • 1
    • 2
  • Jasmina Vraneš
    • 1
  • Sabine Hofmann-Thiel
    • 4
  • Marija Tonkić
    • 5
  • Anita Novak
    • 5
  • Viljemka Bučević-Popovic
    • 6
  • Harald Hoffmann
    • 4
  1. 1.Department of Microbiology, School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Clinical Hospital Center ZagrebZagrebCroatia
  3. 3.Dr Andrija Stampar Institute of Public HealthZagrebCroatia
  4. 4.IML red, synlab MVZ Gauting, Asklepios FachklinikenGautingGermany
  5. 5.Department of MicrobiologySplit University HospitalSplitCroatia
  6. 6.Department of Chemistry, Faculty of Natural Sciences, Mathematics and EducationUniversity of SplitSplitCroatia

Personalised recommendations