Wiener klinische Wochenschrift

, Volume 124, Issue 11–12, pp 377–383 | Cite as

Strength of skeletal muscle and self-reported physical performance in Austrian glioblastoma-patients

  • Mohammad Keilani
  • Christoph Krall
  • Christine Marosi
  • Birgit Flechl
  • Karin Dieckmann
  • Georg Widhalm
  • Maximilian Marhold
  • Richard CrevennaEmail author
original article



Aim of this study was to describe longitudinal assessments of handgrip strength, strength of thigh muscles, and self-reported physical performance in patients with glioblastoma after neurosurgical intervention undergoing chemoradiation.


Strength testing was performed in 24 Austrian glioblastoma patients (m:f = 19:5, 52 ± 14a, BMI = 26 ± 3 kg/m²) at baseline and follow up after chemoradiation (interval between baseline and follow up = 14 ± 9 weeks). Isokinetic testing of knee extension/flexion was performed by using a Biodex 3 dynamometer. Handgrip strength was measured by using a Jamar hand-dynamometer. Physical performance was assessed by using the subscales “physical functioning” and “role physical” of the SF-36 Health Survey.


Peak torque of knee extensors (peak torque) were clearly lower than expected for age- and sex-related values (p < 0.0001). In comparison with age- and sex-related reference values, deficits of “role physical” (p < 0.0001) and “physical functioning” (p = 0.010) were found.

Effects of measurements of muscle strength on “physical functioning” were significant (peak torque:p < 0.001; handgrip strength:p < 0.001).

No significant change could be detected after follow up for peak torque (p = 0.337), handgrip strength (p = 0.995), “physical functioning” (p = 0.824), and “role physical” (0.594).


In this study, notable deficits especially in muscular strength of thigh muscles and general physical performance of patients with glioblastoma have been found before and after chemoradiation. Reduced muscle strength and impaired self-reported physical performance seem to be clinically relevant functional deficits in (Austrian) glioblastoma patients. Therefore, rehabilitation and supportive care should also include options to increase muscle strength.


Glioblastoma Self-reported physical performance Muscular strength Isokinetic testing Handgrip 

Muskelkraft und selbsteingeschätzte körperliche Leistungsfähigkeit bei österreichischen Glioblastom-Patienten



Die vorliegende Untersuchung hatte die Beschreibung der motorischen Grundeigenschaft „Kraft“ (vor und nach Chemoradiatio) und deren Auswirkung auf die Leistungs- und Funktionsfähigkeit von Glioblastom (GBM)-Patienten zum Ziel.


24 Patienten (m:f = 19:5, 52 ± 14a, BMI = 26 ± 3 kg/m²) wurden in die vorliegende Pilot-Untersuchung eingeschlossen. Es wurden bei jedem Patienten eine „Handdynamometrie“ mit Ermittlung der Faustschlusskraft (Jamar®) sowie eine isokinetische Dynamometrie der Extensoren und Flexoren der Kniegelenke (Biodex®-3) vor und nach Chemoradiatio (Abstand zwischen den Messungen = 14 ± 9 Wochen) durchgeführt. Die körperliche Leistungs- und Funktionsfähigkeit der Studienteilnehmer wurde mittels der Subskalen „Körperliche Funktionsfähigkeit“ und „Körperliche Rollenfunktion“ des SF-36 Health Survey erfragt.


Das maximale Drehmoment der Knieextensoren (maximales Drehmoment) lag deutlich unter den alters- und geschlechtsspezifischen Erwartungswerten (p < 0,0001). Verglichen mit alters- und geschlechtsspezifischen Referenzwerten konnten signifikante Defizite der selbsterfassten Leistungs- und Funktionsfähigkeit der Patienten („Körperliche Rollenfunktion“:p < 0,0001; „Körperliche Funktionsfähigkeit“:p = 0,010) gefunden werden. Sowohl Faustschlusskraft als auch maximales Drehmoment zeigten signifikante (negative) Korrelationen mit der Subskala „Körperliche Funktionsfähigkeit“ (maximales Drehmoment:p < 0,001; Faustschlusskraft:p < 0,001). Maximales Drehmoment (p = 0,337), Faustschlusskraft (p = 0,995), „Körperliche Funktionsfähigkeit“ (p = 0,824), und „Körperliche Rollenfunktion“ (0,594) änderten sich im Zeitverlauf (vor und nach Chemoradiatio) nicht signifikant.


Im Rahmen der vorliegenden Studie an GBM-Patienten (vor und nach Chemoradiatio) konnten deutliche Defizite der Kraft der Knieextensoren und der selbsterfassten körperlichen Leistungs- und Funktionsfähigkeit gefunden werden. Da diese Defizite funktionell relevant für den Alltag der Patienten zu sein scheinen, sollte die Rehabilitation dieser Patienten Optionen zur Verbesserung der motorischen Grundeigenschaft Kraft inkludieren.


Glioblastom Dynamometrie Selbsterfasste körperliche Aktivität 


Conflict of interest

The authors declare that there is no actual or potential conflict of interest in relation to this article.


  1. 1.
    Jones LW, Friedman AH, West MJ, et al. Quantitative assessment of cardiorespiratory fitness, skeletal muscle function, and body composition in adults with primary malignant glioma. Cancer. 2010;116:695–704.PubMedCrossRefGoogle Scholar
  2. 2.
    Jones LW, Mourtzakis M, Peters KB, et al. Changes in functional performance measures in adults undergoing chemoradiation for primary malignant glioma: a feasibility study. Oncologist. 2010;15:636–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones LW, Cohen RR, Mabe SK, et al. Assessment of physical functioning in recurrent glioma: preliminary comparison of performance status to functional capacity testing. J Neurooncol. 2009;94:79–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Sturdza A, Millar BA, Bana N, et al. The use and toxicity of steroids in the management of patients with brain metastases. Support Care Cancer. 2008;16:1041–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Stieber VW. Low-grade gliomas. Curr Treat Options Oncol. 2001;2:495–506.PubMedCrossRefGoogle Scholar
  6. 6.
    Batchelor TT, Taylor LP, Thaler HT, Posner JB, DeAngelis LM. Steroid myopathy in cancer patients. Neurology. 1997;48:1234–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Koehler PJ. Use of corticosteroids in neuro-oncology. Anticancer Drugs. 1995;6:19–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Dropcho EJ, Soong SJ. Steroid-induced weakness in patients with primary brain tumors. Neurology. 1991;41:1235–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Mitra R. Adverse effects of corticosteroids on bone metabolism: a review. PM&R. 2011;3:466–71.CrossRefGoogle Scholar
  10. 10.
    Maruotti N, Corrado A, Cantatore FP. Glucocorticoid induced risk of fractures. Panminerva Med. 2010;52:339–43.PubMedGoogle Scholar
  11. 11.
    Cohen SB. Comorbidities: glucocorticoids and osteoporosis: predicting fracture risk. Nat Rev Rheumatol. 2010;6:681–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Hülsmann M, Quittan M, Berger R, et al. Muscle strength as a predictor of long-term survival in severe congestive heart failure. Eur J Heart Fail. 2004;6:101–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque, and position measurements. Eur J Appl Physiol. 2004;91:22–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Crevenna R, Mähr B, Fialka-Moser V, Keilani M. Strength of skeletal muscle and quality of life in patients suffering from “typical male” carcinomas. Support Care Cancer. 2009;17:1225–8.CrossRefGoogle Scholar
  16. 16.
    Feiereisen P, Vaillant M, Eischen D, Delagardelle C. Isokinetic versus one-repetition maximum strength assessment in chronic heart failure. Med Sci Sports Exerc. 2010;42:2156–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Quittan M, Wiesinger GF, Crevenna R, et al. Isokinetic strength testing in patients with chronic heart failure—a reliability study. Int J Sports Med. 2001;22:40–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Biodex Multi joint System 3 PRO. Application/operations manual. Biodex Medical Systems Shirley. New York; 2000.Google Scholar
  19. 19.
    Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2001 May 3. Epub ahead of print.Google Scholar
  20. 20.
    Perrin DH. Isokinetic exercise and assessment. Champaign: Human Kinetics; 1993.Google Scholar
  21. 21.
    Harkonen Harju R, Alaranta H. Accuracy of the Jamar dynamometer. J Hand Ther. 1993;6:259–62.CrossRefGoogle Scholar
  22. 22.
    Peters MJ, van Nes SI, Vanhoutte EK, on behalf of the PeriNomS Study group, et al. Revised normative values for grip strength with Jamar Dynamometer. J Peripher Nerv Syst. 2011;16:47–50.PubMedCrossRefGoogle Scholar
  23. 23.
    American Society of Hand Therapists. Clinical Assessment Recommendations. 2nd edn. Chicago: The Society; 1992. p. 41–5.Google Scholar
  24. 24.
    Mathiowetz V. Grip and pinch strength measurements. In: Amundsen LR, editor. Muscle strength testing instrumented and noninstrumented systems. New York: Churchill Livingstone; 1990. p. 163–77.Google Scholar
  25. 25.
    Bullinger M. German translation and psychometric testing of the SF-36 Health Survey: preliminary results from the IQOLA Project. International Quality of Life Assessment. Soc Sci Med. 1995;41:1359–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Marosi C. Chemotherapy for malignant gliomas. Wien Med Wochenschr. 2006;156:346–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Gorlia T, Van Den Bent MJ, Hegi ME, et al. Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol. 2008;9:29–38.PubMedCrossRefGoogle Scholar
  28. 28.
    Stupp R, Hegi ME, Mason WP, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group, et al. Effects of radiotherapy with concomitant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Weiler M, Hartmann C, Wiewrodt D, et al. Chemoradiotherapy of newly diagnosed glioblastoma with intensified temozolomide. Int J Radiat Oncol Biol Phys. 2010;77:670–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Pereira RM, Freire de C. Glucocorticoid-induced myopathy. Joint Bone Spine. 2011;78:41–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Kvale EA, Murthy R, Taylor R, Lee JY, Nabors LB. Distress and quality of life in primary high-grade brain tumor patients. Support Care Cancer. 2009;17:793–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Lamperti E, Pantaleo G, Finocchiaro CY, et al. Recurrent brain tumour: the impact of illness on patient’s life. Support Care Cancer. 2011 Jul 3. Epub ahead of print.Google Scholar
  33. 33.
    Wijndaele K, Duvigneaud N, Matton L, et al. Muscular strength, aerobic fitness, and metabolic syndrome risk in Flemish adults. Med Sci Sports Exerc. 2007;39:233–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Mohammad Keilani
    • 1
  • Christoph Krall
    • 2
  • Christine Marosi
    • 3
  • Birgit Flechl
    • 3
  • Karin Dieckmann
    • 4
  • Georg Widhalm
    • 5
  • Maximilian Marhold
    • 3
  • Richard Crevenna
    • 1
    Email author
  1. 1.Department of Physical Medicine and RehabilitationMedical University of ViennaViennaAustria
  2. 2.Section of Medical Statistics, Core Unit for Medical Statistics and InformaticsMedical University of ViennaViennaAustria
  3. 3.Department of Internal Medicine I/Division of OncologyMedical University of ViennaViennaAustria
  4. 4.Department of RadiotherapyMedical University of ViennaViennaAustria
  5. 5.Department of NeurosurgeryMedical University of ViennaViennaAustria

Personalised recommendations