Wiener klinische Wochenschrift

, Volume 123, Issue 23–24, pp 693–699 | Cite as

Application of the comet assay method in clinical studies

  • Petra Fikrová
  • Rudolf Štětina
  • Miloslav Hronek
  • Radek Hyšpler
  • Alena Tichá
  • Zdeněk Zadák
Review article

Summary

The comet assay or single-cell gel electrophoresis (SCGE) assay is now widely accepted as a standard method for assessing DNA damage in individual cells. It finds use in a broad variety of applications including human biomonitoring, genotoxicology, ecological monitoring and as a tool for investigation of DNA damage and repair in different cell types in response to a range of DNA-damaging agents. The comet assay should be eminently suitable for use in clinical practice since it is a relatively simple and inexpensive technique which requires only a few cells, and results can be obtained within a matter of hours. This method can be used in the study of cancer as well as in lifestyle and dietary studies. In cancer it is useful for measuring DNA damage before, throughout and after therapy (either radiotherapy or chemotherapy). Another use of this method is in lifestyle study, such as investigation of the effect on DNA of common human activities (e.g. smoking, or working with a potentially genotoxic agent). The final use of comet assay in this paper is dietary study. In this type of study we observe the effects of consumption of specific foods or supplements which may be protective for DNA against damage.

Keywords

Comet assay DNA damage Cancer Nutrition 

Anwendung der "Comet Assay" Methode in klinischen Studien

Zusammenfassung

Der "Comet-Assay" oder Einzelzell Gel Elektrophorese Assay wird heute allgemein als Standard Methode zur Bestimmung von DNS-Schäden in individuellen Zellen anerkannt. Er findet seine Verwendung in einer großen Variation von Anwendungen, wie zum Beispiel dem humanen Bio-Monitoring, der Gentoxikologie, dem ökologischem Monitoring oder als Werkzeug zur Erforschung von Schäden und Reparatur der DNS verschiedener Zelltypen als Antwort auf eine Vielzahl von DNS schädigenden Stoffen. Der "Comet-Assay" sollte besonders geeignet für die klinische Praxis-Sein, da es sich um einen relativ billigen Test mit relativ einfacher Technik handelt, der nur wenige Zellen benötigt. Die Ergebnisse liegen innerhalb von Stunden vor. Die Methode kann sowohl bei Krebs-Studien als auch bei Lifestyle- und Diät-Studien angewandt werden: Bei Krebs-Studien ist sie zur Erfassung der DNS-Schäden vor, während und nach einer Therapie (entweder Bestrahlung oder Chemotherapie) nützlich. Bei Lifestyle-Studien kann sie zur Erforschung der Wirkung von häufigen humanen Aktivitäten (zum Beispiel Rauchen oder Arbeiten mit einem potentiell gentoxischem Stoff) auf die DNS angewandt werden. Schließlich kann der "Comet-Assay" auch die Wirkung von verschiedenen Diäten auf die DNS erfassen. In einer solchen Studie beobachten wir die Wirkung vom Verzehr von spezifischen Nahrungs- und Ergänzungsmittel, die eine DNS-schützende Wirkung haben können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for the quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184–91PubMedCrossRefGoogle Scholar
  2. Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 2004;26:249–61PubMedCrossRefGoogle Scholar
  3. Liao W, McNutt MA, Zhu WG. The comet assay: A sensitive method for detecting DNA damage in individual cells. Methods 2009;48:46–53PubMedCrossRefGoogle Scholar
  4. Fairbairn DW, Olive PL, O'Neill KL. The Comet Assay: A comprehensive review. Mutat Res 1995;339:37–59PubMedGoogle Scholar
  5. McKenna DJ, McKeown SR, McKelvey-Martin VJ. Potential use of the comet assay in the clinical management of cancer. Mutagenesis 2008;23:183–90PubMedCrossRefGoogle Scholar
  6. Collins AR, Dusinska M, Horvathova E, Munro E, Savio M, Stetina R. Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 2001;16:297–301.PubMedCrossRefGoogle Scholar
  7. Glei M, Hovhannisyan G, Pool-Zobel BL. Use of Comet-FISH in the study of DNA damage and repair: Review. Mutat Res 2009;681:33–43PubMedCrossRefGoogle Scholar
  8. Shaposhnikov S, Frengen E, Collins AR. Increasing the resolution of the comet assay using fluorescent in situ hybridization—a review. Mutagenesis 2009;24:383–9PubMedCrossRefGoogle Scholar
  9. Kumaravel TS, Bristow RG. Detection of genetic instability at HER-2/neu and p53 loci in breast cancer cells using comet-FISH. Breast Cancer Res Treat 2005;91:89–93PubMedCrossRefGoogle Scholar
  10. McKenna DJ, Rajab NF, McKeown SR, McKerr G, McKelvey-Martin VJ. Use of the comet-FISH assay to demonstrate repair of the TP53 gene region in two human bladder carcinoma cell lines. Radiation Res 2003;159:49–56PubMedCrossRefGoogle Scholar
  11. Ostling O, Johanson KJ. Microeletrophoetic study of radiation induced DNA damage in individual mammalian cells. Biochem. Biophys Res Common 1984;123:291–8CrossRefGoogle Scholar
  12. Olive PL, Banath JP, Durand RE. Detection of etoposide resistance by measuring DNA damage in individual Chinese hamster cells. J Natl Cancer Inst 1990;82:779–83PubMedCrossRefGoogle Scholar
  13. Collins AR, Duthie SJ, Dobson VL. Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis 1993;14:1733–5PubMedCrossRefGoogle Scholar
  14. Olive PL. Impact of the comet assay in radiobiology. Mutat Res 2009;681:13–23PubMedCrossRefGoogle Scholar
  15. Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res 1998;150:42–51CrossRefGoogle Scholar
  16. Miyamae Y, Iwasaki K, Kinae N, Tsuda S, Murakami M, Tanaka M. Detection of DNA lesions induced by chemical mutagens using the single-cell gel electrophoresis (Comet) assay. 2. Relationship between DNA migration and alkaline condition. Mutat Res 1997;393:107–13PubMedGoogle Scholar
  17. Tice R, Vasquez M. Protocol for the application of the pH > 13 alkaline single cell gel (SCG) assay to the detection of DNA damage in mammalian cells. 1999; cometassy.com
  18. Bocker W, Bauch T, Muller WU, Streffer C. Image analysis of comet assay measurements. Int J Radiat Biol 1997;72:449–60PubMedCrossRefGoogle Scholar
  19. Fairbairn DW, Walburger DK, Fairbairn JJ, O'Neill KL. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 1996;18:407–16PubMedCrossRefGoogle Scholar
  20. Olive PL. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 1999;75:395–405PubMedCrossRefGoogle Scholar
  21. Kumaravel TS, Vilhar B, Faux SP, Jha AN. Comet Assay measurements: a perspective. Cell Biol Toxicol 2009;25:53–64PubMedCrossRefGoogle Scholar
  22. Olive PL, Banath JP, Durand RE. Heterogeneity in radiationinduced DNA damage and repair in tumor and normal cells measured using the "Comet" assay. Radiat Res 1990;122:86–94PubMedCrossRefGoogle Scholar
  23. Collins AR, Ma AG, Duthie SJ. The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidine) in human cells. Mutat Res 1995;336:69–77PubMedGoogle Scholar
  24. Gamulin M, Garaj-Vrhovac V, Kopjar N. Evaluation of DNA damage in radiotherapy-treated cancer patients using the alkaline comet assay. Coll Antropol 2007;31:837–45.PubMedGoogle Scholar
  25. Gamulin M, Kopjar N, Grgić M, Ramić S, Bišof V, Garaj-Vrhovac V. Genome Damage in Oropharyngeal Cancer Patients Treated by Radiotherapy. Croat Med J 2008;49:515–27PubMedCrossRefGoogle Scholar
  26. Sanchez-Suarez P, Ostrosky-Wegman P, Gallegos-Hernandez P, Pe~narroja-Flores R, Toledo-Garćia J, Bravo J.L, et al. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer. Mutat Res 2008;640:8–15PubMedCrossRefGoogle Scholar
  27. Olliver JR, Hardie LJ, Gong Y, Dexter S, Chalmers D, Harris KM, et al. Risk factors, DNA damage, and disease progression in Barrett's esophagus. Cancer Epidemiol. Biomarkers Prev 2005;14:620–5CrossRefGoogle Scholar
  28. Baltaci V, Kayikcioglu F, Alpas I, Zeyneloglu H, Haberal A. Sister chromatid exchange rate and alkaline comet assay scores in patients with ovarian cancer. Gynecol Oncol 2002;84:62–6PubMedCrossRefGoogle Scholar
  29. Palyvoda O, Polanska J, Wygoda A, Rzeszowska-Wolny J. DNA damage and repair in lymphocytes of normal individuals and cancerpatients: studies by the comet assay and micronucleus tests. Acta Biochim Pol 2003;50:181–90PubMedGoogle Scholar
  30. Nascimento PA, da Silva MA, Oliveira EM, Suzuki M, Okazaki K. Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients. Braz J Med Biol Res 2001;34:165–76.PubMedCrossRefGoogle Scholar
  31. Gamulin M, Gargaj-Vrhovac V, Kopjan N, Ramic S, Viculin T, Juretic A, et al. DNA and cytogenetic damage in white blood cells of postmenopausal breast cancer patients treated with radiotherapy. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 2010;45:292–304CrossRefGoogle Scholar
  32. Smith TR, Miller MS, Lohman KK, Case LD, Hu JJ. DNA damage and breast cancer risk. Carcinogenesis 2003;24:883–9PubMedCrossRefGoogle Scholar
  33. Lou J, He J, Zheng W, Jin L, Chen Z, Chen S, et al. Investigating the genetic instability in the peripheral lymphocytes of 36 untreated lung cancer patients with comet assay and micronucleus assay. Mutat Res 2007;617:104–10.PubMedCrossRefGoogle Scholar
  34. Rusin P, Olszewski J, Morawiec-Bajda A , Przybylowska K, Kaczmarczyk D, Golinska A, et al. Comparative study of DNA damage and repair in head and neck cancer after radiation treatment. Cell Biol Int 2009;33:357–63.PubMedCrossRefGoogle Scholar
  35. Rusin P, Walczak A, Zwierzchlejska A, Olszewski J, Morawiec-Bajda A, Kaczmarczyk D, et al. DNA damage and repair of head and neck cancer cells after radio- and chemotherapy. Zeitschrift fur Naturforschung - Section C Journal of Biosciences 2009;64:601–10Google Scholar
  36. Rusin P, Markiewicz L, Olszewski JB, Morawiec-Sztandera A, Kowalski M,Przybylowska K, et al. DNA double strand breaks repair and apoptosis induction in peripheral blood lymphocytes of head and neck cancer patiens. Exp Oncol 2009;31:168–73PubMedGoogle Scholar
  37. Kassie F, Parzefall W, Knasmüller S. Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res 2000;463:13–31PubMedCrossRefGoogle Scholar
  38. Green MHL, Lowe JE, Waugh APW, Aldridge KE, Cole J, Arlett CF. Effect of diet and vitamin C on DNA strand breakage in freshly-isolated human white blood cells. Mutat Res 1994;316:91–102PubMedGoogle Scholar
  39. Hartmann A, Niess AM, Grünter-Fuchs M, Poch B, Speit G. Vitamin E prevents exercise-induced DNA damage. Mutat Res 1995;346:195–202PubMedCrossRefGoogle Scholar
  40. Duthie SJ, Ma A, Ross MA, Collins AR. Antioxidant supplementation decreases oxidative damage in human lymphocytes. Cancer Res 1996;56:1291–5PubMedGoogle Scholar
  41. Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R. The comet assay: what can it really tell us? Mutat Res 1997;375:183–93PubMedCrossRefGoogle Scholar
  42. Pool-Zobel BL, Bub A, Müller H, Wollowski, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis 1997;18:1847–50PubMedCrossRefGoogle Scholar
  43. Pool-Zobel BL, Bub A, Liegibel UM, Treptow-Van-Lishaut S, Rechkemmer G. Mechanisms by which vegetables consumption reduces genetic damage in humans, Cancer Epidemiol. Biomarkers Prev 1998;7:891–9Google Scholar
  44. Anderson D, Phillips BJ, Yu T, Edwards AJ, Ayesh R, Butterworth KR. The effect of vitamin C supplementation on biomarkers of oxygen radical generated damage in human volunteers with low or high cholesterol levels. Environ Mol Mutagen 1997;30:161–17446PubMedCrossRefGoogle Scholar
  45. Kim H, Moon JY, Kim H, Lee D-S, Cho M, Choi H-K, et al. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chemistry 2010;121:429–36CrossRefGoogle Scholar
  46. Chen H-M, Wu Y-C, Chia Y-C, Chang F-R, Hsu H-K, Hsieh Y-C, et al. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Letters 2009;286:161–71PubMedCrossRefGoogle Scholar
  47. Riso P, Martini D, Visioli F, Martinetti A, Porrini M. Effect of broccoli intake on markers related to oxidative stress and cancer risk in healthy smokers and nonsmokers. Nutr Cancer 2009;61:232–7.PubMedCrossRefGoogle Scholar
  48. Varvaˇovská J, Štětina R, Sýkora J, Pomahaˇová R, Rušavý Z, Lacigová S, et al. Aspects of oxidative stress in children with Type 1diabetes mellitus. Biomedicine and Pharmacotherapy 2004;58:539–45CrossRefGoogle Scholar
  49. Binkova B, Lewtas J, Miskova I, Rössner P, Cerna M, Mrackova G, et al. Biomarker studies in Northern Bohemia. Environ. Health Perspect 1996;104:591–7PubMedGoogle Scholar
  50. Sram RJ, Podrazilova K, Dejmek J, Mrackova G, Pilcik T. Single cell gel electrophoresis assay: sensitivity of peripheral white blood cells in human population studies, Mutagenesis 1998;13:99–103PubMedGoogle Scholar
  51. Frenzilli G, Betti C, Davini T, Desideri M, Fornai E, Giannessi L, et al. Evaluation of DNA damage in leukocytes of ex-smokers by single cell gel electrophoresis. Mutat Res 1997;375:117–23PubMedCrossRefGoogle Scholar
  52. Rekhadevi PV, Mahboob M, Rahman MF, Grover P. Genetic damage in wood dust-exposed workers. Mutagenesis 2009;24:59–65.PubMedCrossRefGoogle Scholar
  53. Grover P, Rekhadevi PV, Danadevi K, Vuyyuri SB, Mahboob M, Rahman MF. Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 2010;213:99–106PubMedCrossRefGoogle Scholar
  54. Vodička P, Tuimala J, Štětina R, Kumar R, Manini P, Naccarati A, et al. Cytogenetic Markers, DNA Single-Strand Breaks, Urinary Metabolites, and DNA Repair Rates in Styrene-Exposed Lamination Workers. Environ Health Perspect 2004;112:867–71PubMedCrossRefGoogle Scholar
  55. Hughes CM, McKelvey-Martin VJ, Lewis SEM. Human sperm DNA integrity assessed by the comet and ELISA assays. Mutagenesis 1999;14:71–5PubMedCrossRefGoogle Scholar
  56. Betti C, Davini T, Giannessi L, Loprieno N, Barale R. Microgel electrophoresis assay (comet test) and SCE analysis in human lymphocytes from 100 normal subjects. Mutat Res 1994;307:323–33PubMedCrossRefGoogle Scholar
  57. Sardas S, Walker D, Akyol D, Karakaya AE. Assessment of smoking-induced DNA damage in lymphocytes of smoking mothers of newborn infants using the alkaline single-cell gel electrophorsis technique. Mutat Res 1995;335:213–7.PubMedGoogle Scholar
  58. Liu S-K, Wangh L, Chen C, Zhang ZZ. Cigarette smoke-induced oxidative damage to human bronchial epithelial cells. Journal of Sichuan University 2009;40:667–71Google Scholar
  59. Moktar A, Ravoori S, Vadhanam MV, Gairola CGc, Gupta RC. Cigarette smoke-induced DNA damage and repair detected by the comet assay in HPV-transformed cervical cells. Int J Oncol 2009;35:1297–304.PubMedGoogle Scholar
  60. Jha AN. Ecotoxicological applications and significance of the comet assay. Mutagenesis 2008;23:207–21PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Petra Fikrová
    • 1
    • 2
  • Rudolf Štětina
    • 2
    • 3
  • Miloslav Hronek
    • 1
    • 2
  • Radek Hyšpler
    • 2
  • Alena Tichá
    • 2
  • Zdeněk Zadák
    • 2
  1. 1.Charles University, Faculty of PharmacyDepartment of Biological SciencesHradec KrálovéCzech Republic
  2. 2.University Hospital Hradec KrálovéDepartment of Research and DevelopmentHradec KrálovéCzech Republic
  3. 3.Faculty of Military Health SciencesDepartment of ToxicologyHradec KrálovéCzech Republic

Personalised recommendations