Wiener klinische Wochenschrift

, Volume 123, Supplement 1, pp 20–25

Sensitivity of Plasmodium vivax to chloroquine, mefloquine, artemisinin and atovaquone in north-western Thailand

  • Moritz Treiber
  • Gunther Wernsdorfer
  • Ursula Wiedermann
  • Kanungnit Congpuong
  • Jeeraphat Sirichaisinthop
  • Walther H. Wernsdorfer
Original article

Summary

Excepting tropical Africa, where Plasmodium falciparum prevails, Plasmodium vivax is the most frequent cause of malaria in Asia and Latin America. First reliable reports of chloroquine resistance came in 1989 from the area of the distribution of the Chesson-strain of P. vivax. Since then, reports also came from other areas of the world. This study had the objective of measuring the sensitivity of P.vivax to chloroquine and potential alternative compounds in western Thailand. The study was performed in 2008 in Mae Sot, Tak Province, and followed the method of Tasanor. The IC50 and IC90 values for chloroquine were 167 nM and 5445 nM, those for mefloquine were 139 nM and 5282 nM, those for artemisinin were 32 nM and 466 nM, and those for atovaquone 30 nM and 650 nM. The values for chloroquine indicate the existing or imminent occurrence of specific resistance. High prevalence of mefloquine resistance precludes its alternative use. However, atovaquone, in combination with proguanil, may be a possible alternative.

Keywords

Plasmodium vivax Chloroquine Mefloquine Artemisinin Atovaquone 

Sensibilität von Plasmodium vivax gegenüber Chloroquin, Mefloquin, Artemisinin und Atovaquon im Nordwesten Thailands

Zusammenfassung

Mit Ausnahme des tropischen Teils von Afrika, ist Plasmodium vivax die in Asien und Lateinamerika häufigste Ursache der Malaria. Im Verbreitungsgebiet des Chesson-Stammes von P. vivax wurde 1989 erstmals Chloroquin-Resistenz beschrieben. Seither sind mehrere Berichte auch aus anderen Gegenden der Welt erschienen. Diese Studie hatte das Ziel, die Empfindlichkeit von P. vivax gegenüber Chloroquin und möglichen Alternativmedikamenten im Westen Thailands zu messen. Die Arbeiten fanden 2008 in Mae Sot, Tak Provinz, Thailand statt und folgten der Methode von Tasanor. Die IC50 und IC90 Werte für Chloroquin beliefen sich auf 167 nM und 5445 nM, jene für Mefloquin auf 139 nM und 5282 nM, während sie für Artemisinin bei 32 nM und 466 nM und für Atovaquon bei 30 nM und 650 nM lagen. Diese Werte weisen auf baldigen oder bereits erfolgten Eintritt der Chloroquin-Resistenz hin. Auch der alternative Einsatz von Mefloquin erübrigt sich auf Grund hoher Resistenzwerte. Dem gegenüber stellt Atovaquon, zusammen mit Proguanil, eine mögliche Alternative dar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mendis K, Sina BJ, Marchesini P, Carter R. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 2001;64:97–106PubMedGoogle Scholar
  2. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 2004;4: 327–36PubMedCrossRefGoogle Scholar
  3. Haworth J. The global distribution of malaria in the world and the present control effort. In Wernsdorfer WH, McGregor Sir IA (eds) Malaria: principles and practice of malariology. Churchill Livingstone, Edinburgh, 1988, pp. 1379–420Google Scholar
  4. Miller LH, Mason SI, Clyde DF, McGinnis MH. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 1976;295:302–4PubMedCrossRefGoogle Scholar
  5. Ménard D, Barnadas C, Bouchier C, et al. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 2010;107:5967–71PubMedCrossRefGoogle Scholar
  6. Mueller J, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PI, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009;9:555–66PubMedCrossRefGoogle Scholar
  7. Baird JK. Neglect of Plasmodium vivax malaria. Trends Parasitol 2007;23:533–9PubMedCrossRefGoogle Scholar
  8. Kochar DK, Das A, Kochar SK, Saxena V, Sirobi P, Garg S, et al. Plasmodium vivax malaria. Emerging Infect. Dis 2005;11;132–4PubMedGoogle Scholar
  9. Barcus MJ, Basri H, Picarima H, Manyakori C, Sekartuti, Elyazar I, et al. Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am J Trop Med Hyg 2007;77:984–91PubMedGoogle Scholar
  10. Wernsdorfer G, Wernsdorfer WH. Social and economic aspects of malaria and its control. In: Wernsdorfer WH, McGregorSir IA (eds) Malaria. Principles and practice of malariology. Churchill Livingstone, Edinburgh 1988, pp. 1421–71Google Scholar
  11. Krotoski WA, Collins WE, Bray RS, Garnham PCC, Cogswell FB, Gwadz R, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg 1982;31:1291–3PubMedGoogle Scholar
  12. World Health Organization. The use of antimalarial drugs. Report of a WHO Informal Consultation. Document 2001. WHO/CDS/RBM/2001.33Google Scholar
  13. Nasveld P, Kitchener S. Treatment of acute vivax malaria with tafenoquine. Trans R Soc Trop Med Hyg 2005;99:2–5PubMedCrossRefGoogle Scholar
  14. Rieckmann KH, Davis DR, Hutton DC. Plasmodium vivax resistance to chloroquine? Lancet 1989;2:1183–4PubMedCrossRefGoogle Scholar
  15. Fryauff DJ, Tuti S, Mardi A, et al. Chloroquine-resistant Plasmodium vivax in transmigration settlements of west Kalimantan, Indonesia. Am J Trop Med Hyg 1998;59:513–8PubMedGoogle Scholar
  16. Malar-Than, Myat-Phone-Kyaw, Aye-Yu-Soe, Khaing-Khaing-Gyi, Ma-Sabai, Myint-Oo. Development of resistance to chloroquine by vivax in Myanmar. Trans R Soc Trop Med Hyg 1995;89:307–8CrossRefGoogle Scholar
  17. Sharrock WW, Suwanarusk R, Lek-Uthai U et al. Plasmodium vivax trophozoites insensitive to chloroquine. Malaria J 2008;7:94CrossRefGoogle Scholar
  18. Suwanarusk R, Russell B, Chavchich M, et al. Chloroquine resistant Plasmodium vivax: in vitro characterization and association with molecular polymorhisms. Malaria J 2008;7:84CrossRefGoogle Scholar
  19. Alecrim MGC, Alecrim W, Macédo V. Plasmodium vivax resistance to chloroquine (R2) and mefloquine (R3) in Brazilian Amazon region. Rev Soc Brasil Med Trop 1999;32:67–8Google Scholar
  20. Soto J, Toledo J, Guttierrez, et al. Plasmodium vivax clinically resistant to chloroquine in Colombia. Am J Trop Med Hyg 2001;65:90–3PubMedGoogle Scholar
  21. Phillips EJ, Keystone JS, Kain KC. Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis 1996;23:1171–3PubMedCrossRefGoogle Scholar
  22. Ruebush TK, Zegarra J, Cairo J, et al. Chloroquine-resistant Plasmodium vivax malaria in Peru. Am J Trop Med Hyg 2003;69:548–52PubMedGoogle Scholar
  23. Teka H, Petros B, Yamuah L, et al. Chloroqine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia. Malaria J 2008;7:220CrossRefGoogle Scholar
  24. Baird JK. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 2004;49:4075–83CrossRefGoogle Scholar
  25. Coatney GR, Cooper WC, Young MD. Studies in human malaria. XXX. A summary of 204 sporozoite-induces infections with the Chesson strain of Plasmodium vivax. J Nat Mal Soc 1950;9:381–96Google Scholar
  26. Nicolaiev BP. Subspecies of the parasite of tertian malaria. Dokhlady Akademii Nauk SSSR 1949;67:201–10Google Scholar
  27. Jiang JB, Yu SY, Chen JM. Plasmodium vivax multinucleatum, a new subspecies of human malaria parasite. Acta Scientiarum Naturalium Universitatis Sunyatseni 1965;1:131–2Google Scholar
  28. Contacos PG, Collins WF, Jeffery GM, Krotoski WA, Howard WA. Studies on the characterization of Plasmodium vivax strains from Central America. Am J Trop Med Hyg 1972;21 (Suppl. 5):707–12PubMedGoogle Scholar
  29. Woitsch B, Wernsdorfer G, Congpuong K, Rojanawatsirivet C, Sirichaisinthop J, Wernsdorfer WH. Susceptibility to chloroquine, mefloquine and artemisinin of Plasmodium vivax in northwestern Thailand. Wien Klin Wochenschr 2007;119:76–82PubMedCrossRefGoogle Scholar
  30. Tasanor O, Noedl H, Na-Bangchang K, Congpuong K, Sirichaisinthop J, Wernsdorfer WH. An in vitro system for assessing the sensitivity of Plasmodium vivax to chloroquine. Acta Tropica 2002;83:49–61PubMedCrossRefGoogle Scholar
  31. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinetics 1996;4:257–74CrossRefGoogle Scholar
  32. Simpson JA, Price R, ter Kuile F, et al. Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharm Therap 1999;66:4723–48CrossRefGoogle Scholar
  33. Sabchareon A, Attanath P, Phanuaksoot P, et al. Efficacy and pharmacokinetics of atovaquone and proguanil in children with multidrug-resistant Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 1998;92:201–6PubMedCrossRefGoogle Scholar
  34. Hodel EM. The effects of pharmacogenetics on pharmacokinetics of artemisinin-based combinations in malaria patients. PhD thesis, University of Basel, Faculty of Science 2009Google Scholar
  35. Wernsdorfer WH, Wernsdorfer MG. The evaluation of in vitro tests for the assessment of drug response in Plasmodium falciparum. Mitt Oesterr Ges Tropenmed Parasitol 1995;17:221–8Google Scholar
  36. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96:99–113PubMedGoogle Scholar
  37. Na-Bangchang K, Ruengweerayut R, Mahamat P, Ruengweerayut K, Chaljaroenkul W. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border. Malaria J 2010;9:273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Moritz Treiber
    • 1
  • Gunther Wernsdorfer
    • 2
  • Ursula Wiedermann
    • 1
  • Kanungnit Congpuong
    • 3
  • Jeeraphat Sirichaisinthop
    • 3
  • Walther H. Wernsdorfer
    • 1
  1. 1.Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Immunology and InfectiologyMedical University of ViennaViennaAustria
  2. 2.Faculty of Tropical MedicineMahidol UniversityBangkokThailand
  3. 3.Directorate of Vector-borne Disease ControlMinistry of Public HealthNonthaburiThailand

Personalised recommendations